Minimum Cost Flow Problems I

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

October 23, 2023

Last few lectures

• Maximum flow problems: important concepts

- Residual graphs
- *s*-*t* cut
- Augmenting paths
- Maximum flow problems: algorithms
 - Generic augmenting path algorithms $O(m^2 U)$
 - Most improving augmenting path algorithms $O(m \log(mU)(m \log n))$
 - Capacity scaling algorithms $O(m^2 \log U)$
 - Shortest path augmenting path algorithms $O(m^2n)$
 - Push-relabel algorithms $O(mn^2)$

1 Minimum cost flow problems: formulation

- What is a minimum cost flow problem?
- Assumptions and concepts

Optimality condition and cycle-canceling algorithms

1 Minimum cost flow problems: formulation

- What is a minimum cost flow problem?
- Assumptions and concepts

2 Optimality condition and cycle-canceling algorithms

3 Minimum mean cycle canceling algorithms

What is a minimum cost flow problem?

• A directed graph G = (N, A)

- Each arc $(i,j) \in A$ has a cost c_{ij} and a capacity constraint u_{ij}
- Each node $i \in N$ has a supply/demand b(i), $\sum_i b(i) = 0$

Define a vector of flow variables f_{ij} over arcs (i, j) such that

- 1 They are nonnegative
- 2 They are upper bounded by the flow capacity
- 3 They satisfy the flow balance equation at all nodes

Minimize the total cost of flow $\sum_{(i,j)\in A} c_{ij} f_{ij}$

What is a minimum cost flow problem?

• A vector $f = \{f_{ij}\}$ satisfying constraints is called a (feasible) flow

Minimum cost flow problems: assumptions and concepts

- The graph is directed
- All data (cost, supply/demand, and capacity) are integral
- The supply/demand satisfy $\sum_{i} b(i) = 0$ and a feasible solution exists
- All arc costs are nonnegative

- The graph is directed
- All data (cost, supply/demand, and capacity) are integral
- The supply/demand satisfy $\sum_{i} b(i) = 0$ and a feasible solution exists
- All arc costs are nonnegative

The residual graph G(f) = (N', A') with respect to a feasible flow f in G = (N, A) is defined as

For each arc (i, j) ∈ A
(i, j) ∈ A' and it has residual capacity r_{ij} = u_{ij} - f_{ij} and cost c_{ij} if u_{ij} - f_{ij} > 0
(j, i) ∈ A' and it has residual capacity r_{ji} = f_{ij} and cost -c_{ij} if f_{ij} > 0

Residual graphs: an example

The residual graph G(f) = (N', A') with respect to a feasible flow f in G = (N, A) is defined as

- N' = N
- For each arc $(i, j) \in A$

(*i*, *j*) $\in A'$ and it has residual capacity $r_{ij} = u_{ij} - f_{ij}$ and cost c_{ij} if $u_{ij} - f_{ij} > 0$

2 $(j, i) \in A'$ and it has residual capacity $r_{ji} = f_{ij}$ and cost -cij if $f_{ij} > 0$

(a) Graph G with flow f

(b) Residual graph G(f)

Minimum cost flow problems: formulationWhat is a minimum cost flow problem?

Assumptions and concepts

2 Optimality condition and cycle-canceling algorithms

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

This suggests a very natural algorithm!

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ij}, (i,j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ij}, (i,j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

Two questions remain

1 How to identify a negative cost cycle?

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ij}, (i,j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

Two questions remain

1 How to identify a negative cost cycle? (Bellman-Ford O(mn))

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ij}, (i,j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

Two questions remain

- **1** How to identify a negative cost cycle? (Bellman-Ford O(mn))
- 2 How to establish a feasible flow?

Min Cost flow I (Lecture 10)

AU4606/AI4702

Minimum cost flow problems: establish a feasible flow

How to determine whether the problem is feasible?

$$\sum_{\substack{j:(i,j)\in A}} f_{ij} - \sum_{\substack{j:(j,i)\in A}} f_{ji} = b(i)$$

 $0 \le f_{ij} \le u_{ij} ext{ for each } (i,j) \in A.$

Build a flow network G' = (N', A') based on G = (N, A) as follows

- Introduce a source node s and a sink node t, and $N' = N \cup \{s, t\}$
- For each node *i* with b(i) > 0, add an arc (s, i) with capacity b(i)
- For each node *i* with b(i) < 0, add an arc (i, t) with capacity -b(i)

Feasible flows

The minimum cost flow problem is feasible if and only if the maximum flow problem saturates all source arcs.

Cycle-canceling algorithm: analysis

Integrality property

If all arc capacities and supplies/demands of nodes are integer, the minimum cost flow problem always has an integer minimum cost flow.

Complexity

The algorithm terminates within O(mCU) iterations and runs in $O(m^2nCU)$ time.

This is again an exponential time algorithm!

Cycle-canceling algorithm: analysis

Integrality property

If all arc capacities and supplies/demands of nodes are integer, the minimum cost flow problem always has an integer minimum cost flow.

Complexity

The algorithm terminates within O(mCU) iterations and runs in $O(m^2nCU)$ time.

This is again an exponential time algorithm!

Two similar improvements as in augmenting path algorithms

- Augmenting along a cycle with maximum $-\delta(W) \sum_{(i,j) \in W} c_{ij}$
 - Identify such cycles is a hard problem
- Augmenting flow along a negative cycle with minimum mean cost

• Mean cost of a cycle
$$W$$
: $\frac{\sum_{(i,j)\in W} c_{ij}}{|W|}$

Minimum cost flow problems: formulationWhat is a minimum cost flow problem?

Assumptions and concepts

2 Optimality condition and cycle-canceling algorithms

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W} c_{ij}}{|W|}$

4:
$$\delta(W) = \min\{r_{ij}, (i,j) \in W\}$$

- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W} c_{ij}}{|W|}$

4:
$$\delta(W) = \min\{r_{ij}, (i,j) \in W\}$$

- 5: Augment $\delta(W)$ units of flow along W and update G(f)
- 6: end while

- How to find a cycle that has minimum mean cost?
- What is the complexity of this algorithm?

Minimum mean cost cycle: computing minimum mean cost

- Let s be a node that has directed paths to all other nodes
- Let d^k(j) be length of shortest directed walk from s to j containing exactly k arcs
- These distances $d^{k}(j)$ can be computed in O(mn) by

$$d^{k}(j) = \min_{(i,j)\in A} \{ d^{k-1}(i) + c_{ij} \}$$

Minimum mean cost

Let μ^{\ast} be the cost of a minimum mean cost cycle, i.e.,

$$\mu^* = \min_{W} \frac{\sum_{(i,j) \in W} c_{ij}}{|W|}$$

then

$$\mu^* = \min_{j \in \mathbb{N}} \max_{0 \le k \le n-1} \frac{d^n(j) - d^k(j)}{n-k}$$

Min Cost flow I (Lecture 10)

With $\mu^*,$ we do the following

- Subtract μ^* from the cost of each arc, i.e., $c_{ij}'=c_{ij}-\mu^*$
- Compute distances d'(j) in modified graph with c'_{ij}

• Let
$$c_{ij}^d=c_{ij}'+d'(i)-d'(j)\geq 0$$

• Claim: cycles consisting of zero cost arcs have minimum mean costs

In summary, minimum mean cost cycle can be identified in O(mn)

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while G(f) contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W} c_{ij}}{|W|}$

4:
$$\delta(W) = \min\{r_{ij}, (i,j) \in W\}$$

5: Augment $\delta(W)$ units of flow along W and update G(f)

6: end while

- First establish that the algorithm is weakly polynomial
- Then show it is actually strongly polynomial

Node potentials

A node potential $p: N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential,

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Node potentials

A node potential $p: N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

Node potentials

A node potential $p: N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network G(f) contains no negative cost directed cycle.

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- **1** f is a minimum cost flow
- **2** Residual network G(f) contains no negative cost cycle

3 There exists a potential p such that $c_{ij}^{p} \ge 0$ for $(i, j) \in G(f)$

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- 1 f is a minimum cost flow
- **2** Residual network G(f) contains no negative cost cycle

3 There exists a potential p such that $c_{ii}^p \ge 0$ for $(i,j) \in G(f)$

ϵ -optimality

A flow f is ϵ -optimal for $\epsilon > 0$ and some node potentials p if the reduced arc cost of each arc is at least $-\epsilon$.

Why is ϵ -optimality useful?

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- 1 f is a minimum cost flow
- **2** Residual network G(f) contains no negative cost cycle

3 There exists a potential p such that $c_{ii}^p \ge 0$ for $(i,j) \in G(f)$

ϵ -optimality

A flow f is ϵ -optimal for $\epsilon > 0$ and some node potentials p if the reduced arc cost of each arc is at least $-\epsilon$.

Why is ϵ -optimality useful?

$\epsilon\text{-optimality}$ and optimality

Suppose the costs c_{ij} are integers. If a flow f is ϵ -optimal for some $\epsilon < \frac{1}{n}$, then f is a minimum-cost flow.

Analysis: weak polynomiality

Let $\epsilon(f)$ be the minimum ϵ for which f is ϵ -optimal.

Nonoptimal flows

If f is not a minimum-cost flow, then

$$\epsilon(f) = -\min_{W \in G(f)} \frac{\sum_{(i,j) \in W} c_{ij}}{|W|} = -\mu^*.$$

Thus, $\epsilon(f)$ can be computed in O(mn).

Analysis: weak polynomiality

Let $\epsilon(f)$ be the minimum ϵ for which f is ϵ -optimal.

Nonoptimal flows

If f is not a minimum-cost flow, then

$$\epsilon(f) = -\min_{W \in \mathcal{G}(f)} rac{\sum_{(i,j) \in W} c_{ij}}{|W|} = -\mu^*.$$

Thus, $\epsilon(f)$ can be computed in O(mn).

Continuous improvement

Let f be a flow and $f^{(k)}$ be the flow after k cycle cancelations, then

- (Monotonicity) $\epsilon(f^{(1)}) \leq \epsilon(f)$
- (Convergence) $\epsilon(f^{(m)}) \leq (1 \frac{1}{n})\epsilon(f)$

Weak polynomiality

The minimum-mean cycle canceling algorithm takes $O(mn \log(nC))$ iterations and $O(m^2n^2 \log(nC))$ overall time.

Min Cost flow I (Lecture 10)

ϵ -fixed arcs

An arc $(i,j) \in A$ is ϵ -fixed if the flow f_{ij} on (i,j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

ϵ -fixed arcs

An arc $(i,j) \in A$ is ϵ -fixed if the flow f_{ij} on (i,j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

Conditions for ϵ -fixed arcs

Let f be an ϵ -optimal flow with respect to node potential p. If $|c_{ij}^p| \ge 2n\epsilon$, then arc (i, j) is ϵ -fixed.

If arcs become ϵ -fixed every few iterations, then we can bound iteration #.

ϵ -fixed arcs

An arc $(i,j) \in A$ is ϵ -fixed if the flow f_{ij} on (i,j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

Conditions for ϵ -fixed arcs

Let f be an ϵ -optimal flow with respect to node potential p. If $|c_{ij}^p| \ge 2n\epsilon$, then arc (i, j) is ϵ -fixed.

If arcs become ϵ -fixed every few iterations, then we can bound iteration #.

Strong polynomiality

The minimum-mean cycle canceling algorithm takes $O(nm^2 \log n)$ iterations and $O(n^2m^3 \log n)$ overall time.

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
 - basics of graph theory
 - algorithm complexity and data structure
 - graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (this and next few lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)