Minimum Cost Flow Problems I

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

October 23, 2023

• Maximum flow problems: important concepts

- Residual graphs
- s -t cut
- Augmenting paths
- Maximum flow problems: algorithms
	- Generic augmenting path algorithms $O(m^2U)$
	- Most improving augmenting path algorithms $O(m \log(mU)(m \log n))$
	- Capacity scaling algorithms $O(m^2 \log U)$
	- Shortest path augmenting path algorithms $O(m^2n)$
	- Push-relabel algorithms $O(mn^2)$

1 [Minimum cost flow problems: formulation](#page-3-0)

- [What is a minimum cost flow problem?](#page-4-0)
- [Assumptions and concepts](#page-6-0)

2 [Optimality condition and cycle-canceling algorithms](#page-9-0)

1 [Minimum cost flow problems: formulation](#page-3-0)

- [What is a minimum cost flow problem?](#page-4-0)
- [Assumptions and concepts](#page-6-0)

2 [Optimality condition and cycle-canceling algorithms](#page-9-0)

[Minimum mean cycle canceling algorithms](#page-18-0)

What is a minimum cost flow problem?

• A directed graph $G = (N, A)$

- **■** Each arc (i, j) \in A has a cost c_{ii} and a capacity constraint u_{ii}
- Each node $i \in N$ has a supply/demand $b(i)$, $\sum_i b(i) = 0$

Define a vector of flow variables f_{ii} over arcs (i, j) such that

- **1** They are nonnegative
- **2** They are upper bounded by the flow capacity
- **3** They satisfy the flow balance equation at all nodes

Minimize the total cost of flow $\sum_{(i,j)\in A}c_{ij}f_{ij}$

What is a minimum cost flow problem?

A vector $f = \{f_{ij}\}\$ satisfying constraints is called a (feasible) flow

Minimum cost flow problems: assumptions and concepts

- The graph is directed
- All data (cost, supply/demand, and capacity) are integral
- The supply/demand satisfy $\sum_i b(i) = 0$ and a feasible solution exists
- All arc costs are nonnegative
- The graph is directed
- All data (cost, supply/demand, and capacity) are integral
- The supply/demand satisfy $\sum_i b(i) = 0$ and a feasible solution exists
- All arc costs are nonnegative

The residual graph $G(f)=(N',A')$ with respect to a feasible flow f in $G = (N, A)$ is defined as

$$
\bullet \ \ N' = N
$$

• For each arc $(i, j) \in A$ $\mathbf{D}^{\top}(i,j) \in A'$ and it has residual capacity $r_{ij} = u_{ij} - f_{ij}$ and cost c_{ii} if $u_{ii} - f_{ii} > 0$ $\bm{2}$ $(j,i) \in A'$ and it has residual capacity $r_{ji} = f_{ij}$ and cost $-c_{ii}$ if $f_{ii} > 0$

Residual graphs: an example

The residual graph $G(f)=(\mathsf{N}',\mathsf{A}')$ with respect to a feasible flow f in $G = (N, A)$ is defined as

- $N' = N$
- For each arc $(i, j) \in A$

 $\mathbf{D}^{\top}(i,j) \in A'$ and it has residual capacity $r_{ij} = u_{ij} - f_{ij}$ and cost c_{ii} if $u_{ii} - f_{ii} > 0$

 $\bm{2}$ $(j,i) \in A'$ and it has residual capacity $r_{ji} = f_{ij}$ and cost $-cii$ if $fii > 0$

(a) Graph G with flow f

(b) Residual graph $G(f)$

[Minimum cost flow problems: formulation](#page-3-0) • [What is a minimum cost flow problem?](#page-4-0)

• [Assumptions and concepts](#page-6-0)

2 [Optimality condition and cycle-canceling algorithms](#page-9-0)

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

This suggests a very natural algorithm!

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ii}, (i, j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ii}, (i, j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

Two questions remain

1 How to identify a negative cost cycle?

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ii}, (i, j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

Two questions remain

1 How to identify a negative cost cycle? (Bellman-Ford $O(mn)$)

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

This suggests a very natural algorithm!

Algorithm Cycle-canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W
- 4: $\delta(W) = \min\{r_{ii}, (i, j) \in W\}$
- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

Two questions remain

- **1** How to identify a negative cost cycle? (Bellman-Ford $O(mn)$)
- **2** How to establish a feasible flow?

Min Cost flow I (Lecture 10) [AU4606/AI4702](#page-0-0) October 23, 2023 7 / 18

Minimum cost flow problems: establish a feasible flow

How to determine whether the problem is feasible?

$$
\sum_{j:(i,j)\in A} f_{ij} - \sum_{j:(j,i)\in A} f_{ji} = b(i)
$$

0 \le f_{ij} \le u_{ij} for each $(i,j) \in A$.

Build a flow network $G' = (N', A')$ based on $G = (N, A)$ as follows

- Introduce a source node s and a sink node t, and $N' = N \cup \{s, t\}$
- For each node *i* with $b(i) > 0$, add an arc (s, i) with capacity $b(i)$
- For each node i with $b(i) < 0$, add an arc (i, t) with capacity $-b(i)$

Feasible flows

The minimum cost flow problem is feasible if and only if the maximum flow problem saturates all source arcs.

Cycle-canceling algorithm: analysis

Integrality property

If all arc capacities and supplies/demands of nodes are integer, the minimum cost flow problem always has an integer minimum cost flow.

Complexity

The algorithm terminates within $O(mCU)$ iterations and runs in $O(m^2nCU)$ time.

This is again an exponential time algorithm!

Cycle-canceling algorithm: analysis

Integrality property

If all arc capacities and supplies/demands of nodes are integer, the minimum cost flow problem always has an integer minimum cost flow.

Complexity

The algorithm terminates within $O(mCU)$ iterations and runs in $O(m^2nCU)$ time.

This is again an exponential time algorithm!

Two similar improvements as in augmenting path algorithms

- Augmenting along a cycle with maximum $-\delta(W)\sum_{(i,j)\in W}c_{ij}$
	- Identify such cycles is a hard problem
- Augmenting flow along a negative cycle with minimum mean cost
	- Mean cost of a cycle $W: \frac{\sum_{(i,j) \in W} c_{ij}}{|W|}$ $|W|$

[Minimum cost flow problems: formulation](#page-3-0) • [What is a minimum cost flow problem?](#page-4-0)

• [Assumptions and concepts](#page-6-0)

2 [Optimality condition and cycle-canceling algorithms](#page-9-0)

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W}c_{ij}}{|W|}$

4:
$$
\delta(W) = \min\{r_{ij}, (i,j) \in W\}
$$

- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

 $|W|$

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W}c_{ij}}{|W|}$

4:
$$
\delta(W) = \min\{r_{ij}, (i,j) \in W\}
$$

- 5: Augment $\delta(W)$ units of flow along W and update $G(f)$
- 6: end while

- How to find a cycle that has minimum mean cost?
- What is the complexity of this algorithm?

 $|W|$

Minimum mean cost cycle: computing minimum mean cost

- Let s be a node that has directed paths to all other nodes
- Let $d^{k}(j)$ be length of shortest directed walk from s to j containing exactly k arcs
- These distances $d^k(j)$ can be computed in $O(mn)$ by

$$
d^{k}(j) = \min_{(i,j)\in A} \{d^{k-1}(i) + c_{ij}\}\
$$

Minimum mean cost

Let μ^* be the cost of a minimum mean cost cycle, i.e.,

$$
\mu^* = \min_W \frac{\sum_{(i,j)\in W} c_{ij}}{|W|}
$$

then

$$
\mu^* = \min_{j \in N} \max_{0 \le k \le n-1} \frac{d^n(j) - d^k(j)}{n-k}
$$

With μ^* , we do the following

- Subtract μ^* from the cost of each arc, i.e., $\epsilon'_{ij} = \epsilon_{ij} \mu^*$
- Compute distances $d'(j)$ in modified graph with c'_{ij}

• Let
$$
c_{ij}^d = c_{ij}^{\prime} + d^{\prime}(i) - d^{\prime}(j) \geq 0
$$

• Claim: cycles consisting of zero cost arcs have minimum mean costs

In summary, minimum mean cost cycle can be identified in $O(mn)$

Algorithm Minimum mean cycle canceling algorithm

- 1: Establish a feasible flow f in the graph
- 2: while $G(f)$ contains a negative cost cycle do
- 3: Identify a negative cost cycle W that has the minimum $\frac{\sum_{(i,j)\in W}c_{ij}}{|W|}$ $|W|$

4:
$$
\delta(W) = \min\{r_{ij}, (i,j) \in W\}
$$

5: Augment $\delta(W)$ units of flow along W and update $G(f)$

6: end while

- **•** First establish that the algorithm is weakly polynomial
- Then show it is actually strongly polynomial

Node potentials

A node potential $p : N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Node potentials

A node potential $p : N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

Node potentials

A node potential $p: N \to \mathbb{R}$ is an assignment of reals to nodes.

Reduced cost with respect to node potential

The reduced cost of an arc (i, j) w.r.t. potential p is $c_{ij}^p = c_{ij} + p(i) - p(j)$.

Negative cycle optimality condition

A feasible solution f is an optimal solution of the minimum cost flow problem if and only if the residual network $G(f)$ contains no negative cost directed cycle.

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- \bigcirc f is a minimum cost flow
- **2** Residual network $G(f)$ contains no negative cost cycle

 \bullet There exists a potential ρ such that $c_{ij}^{\rho}\geq 0$ for $(i,j)\in\mathsf{G}(\mathit{f})$

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- \bigcap f is a minimum cost flow
- **2** Residual network $G(f)$ contains no negative cost cycle

 $\bf 3$ There exists a potential p such that $c_{ij}^p \geq 0$ for $(i,j) \in G(f)$

ϵ -optimality

A flow f is ϵ -optimal for $\epsilon > 0$ and some node potentials p if the reduced arc cost of each arc is at least $-\epsilon$.

Why is ϵ -optimality useful?

Optimality conditions

Let f be a feasible flow, then the following statements are equivalent

- \bigcap f is a minimum cost flow
- **2** Residual network $G(f)$ contains no negative cost cycle

 $\bf 3$ There exists a potential p such that $c_{ij}^p \geq 0$ for $(i,j) \in G(f)$

ϵ -optimality

A flow f is ϵ -optimal for $\epsilon > 0$ and some node potentials p if the reduced arc cost of each arc is at least $-\epsilon$.

Why is ϵ -optimality useful?

ϵ -optimality and optimality

Suppose the costs c_{ij} are integers. If a flow f is ϵ -optimal for some $\epsilon < \frac{1}{n},$ then f is a minimum-cost flow.

Analysis: weak polynomiality

Let $\epsilon(f)$ be the minimum ϵ for which f is ϵ -optimal.

Nonoptimal flows

If f is not a minimum-cost flow, then

$$
\epsilon(f) = -\min_{W \in G(f)} \frac{\sum_{(i,j) \in W} c_{ij}}{|W|} = -\mu^*.
$$

Thus, $\epsilon(f)$ can be computed in $O(mn)$.

Analysis: weak polynomiality

Let $\epsilon(f)$ be the minimum ϵ for which f is ϵ -optimal.

Nonoptimal flows

If f is not a minimum-cost flow, then

$$
\epsilon(f) = -\min_{W \in G(f)} \frac{\sum_{(i,j) \in W} c_{ij}}{|W|} = -\mu^*.
$$

Thus, $\epsilon(f)$ can be computed in $O(mn)$.

Continuous improvement

Let f be a flow and $f^{(k)}$ be the flow after k cycle cancelations, then

- (Monotonicity) $\epsilon(f^{(1)}) \leq \epsilon(f)$
- (Convergence) $\epsilon(f^{(m)}) \leq (1 \frac{1}{n})$ $\frac{1}{n}$) $\epsilon(f)$

Weak polynomiality

The minimum-mean cycle canceling algorithm takes $O(mn \log(nC))$ iterations and $O(m^2n^2\log(nC))$ overall time.

ϵ -fixed arcs

An arc $(i, j) \in A$ is ϵ -fixed if the flow f_{ii} on (i, j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

ϵ -fixed arcs

An arc $(i, j) \in A$ is ϵ -fixed if the flow f_{ii} on (i, j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

Conditions for ϵ -fixed arcs

Let f be an ϵ -optimal flow with respect to node potential p . If $|c_{ij}^p|\geq 2n\epsilon$, then arc (i, j) is ϵ -fixed.

If arcs become ϵ -fixed every few iterations, then we can bound iteration $\#$.

ϵ -fixed arcs

An arc $(i, j) \in A$ is ϵ -fixed if the flow f_{ij} on (i, j) is the same for all ϵ' -optimal flows whenever $\epsilon' \leq \epsilon$.

Due to monotonicity of $\epsilon(f)$, the flow on ϵ -fixed arc does not change!

Conditions for ϵ -fixed arcs

Let f be an ϵ -optimal flow with respect to node potential p . If $|c_{ij}^p|\geq 2n\epsilon$, then arc (i, j) is ϵ -fixed.

If arcs become ϵ -fixed every few iterations, then we can bound iteration $\#$.

Strong polynomiality

The minimum-mean cycle canceling algorithm takes $O(nm^2\log n)$ iterations and $O(n^2m^3\log n)$ overall time.

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
	- basics of graph theory
	- algorithm complexity and data structure
	- graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (this and next few lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)