
Minimum Cost Flow Problems II

AU4606: Network Optimization

Xiaoming Duan
Department of Automation

Shanghai Jiao Tong University

November 6, 2023

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 1 / 16



Last few lectures

Minimum cost flow problems: important concepts

Residual graphs
Negative cost cycles
Optimality conditions

Minimum cost flow problems: algorithms

Generic cycle canceling algorithms O(m2nCU)
Minimum mean cost cycle canceling algorithms

Weak polynomiality analysis: O(m2n2 log(nC))
Strong polynomiality analysis: O(n2m3 log(n))

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 2 / 16



Today

1 Simplex method

2 Network simplex method



Today

1 Simplex method

2 Network simplex method



Linear programming: problem setup

minimize

m∑
i=1

cixi

subject to Ax = b

0 ≤ xi ≤ ui for each i ∈ {1, . . . ,m}.

where A = (aij) ∈ Rn×m and A has full row rank (rank(A) = n)

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 3 / 16



Simplex method: concepts

minimize

m∑
i=1

cixi

subject to Ax = b

0 ≤ xi ≤ ui for each i ∈ {1, . . . ,m}.

Since A has full row rank, there are n linearly independent columns

Partitioning A =
[
AB AL AU

]
and similarly x =

[
x⊤B x⊤L x⊤U

]⊤
W.L.O.G., suppose AB ∈ Rn×n has full rank

Basic feasible solution

A solution x =
[
x⊤B x⊤L x⊤U

]⊤
is a basic feasible solution if

1 xi = 0 for i ∈ L

2 xi = ui for i ∈ U

3 xB = A−1b − A−1xU , and xi ∈ [0, ui ] for i ∈ B

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 4 / 16



Simplex method: concepts

minimize

m∑
i=1

cixi

subject to Ax = b

0 ≤ xi ≤ ui for each i ∈ {1, . . . ,m}.

Partition c =
[
c⊤B c⊤L c⊤U

]⊤
Since AB has full rank, we can select π ∈ Rn such that

c⊤B = π⊤AB

The objective function can be rewritten as

(c⊤L − π⊤AL)xL + (c⊤U − π⊤AU)xU + π⊤b ≜ ĉLxL + ĉUxU + π⊤b

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 5 / 16



Simplex method: optimality condition

Certify a basic feasible solution x =
[
x⊤B x⊤L x⊤U

]⊤
is optimal where

1 xi = 0 for i ∈ L

2 xi = ui for i ∈ U

3 xB = b − A−1xU , and xi ∈ [0, ui ] for i ∈ B

Optimality condition

Let x be a basic feasible solution and ĉLxL + ĉUxU + π⊤b be the
transformed objective function, if

1 ĉi ≥ 0 for i ∈ L

2 ĉi ≤ 0 for i ∈ U

then x is optimal.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 6 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: procedure

Algorithm Simplex method

1: Find a basic feasible solution x
2: Compute the transformed objective ĉLxL + ĉUxU + π⊤b
3: while x does not satisfy the optimality condition do
4: Pick a leaving variable xk = 0 (xk = uk) such that ĉk < 0 (ĉk > 0)
5: Increase (decrease) xk so that some variable xi for i ∈ B reaches boundary
6: Remove i from B and add k to B
7: Update the basic feasible solution x and AB , AL, AU

8: Compute the transformed objective function
9: end while

Issues beyond our discussion:

Why does this work?

How to find a basic feasible solution (detect feasibility)?

How to ensure that after each update we still have a basis matrix?

How to detect whether the objective function is lower bounded?

How to certify the algorithm terminates?

How do we know it is possible to find a leaving variable?

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 7 / 16



Simplex method: an example

minimize − x1 − 3x2

subject to 2x1 + 3x2 + x3 = 6

− x1 + x2 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 8 / 16



Today

1 Simplex method

2 Network simplex method



Network simplex method: concepts

Free and restricted arcs

Given a feasible flow f

An arc (i , j) ∈ A is a free arc if 0 < fij < uij

An arc (i , j) ∈ A is a restricted arc if fij = 0 or fij = uij

Cycle free flow

A feasible flow f is cycle free if it does not contain a cycle composed of
only free arcs.

Cycle free property

If the objective function of a minimum cost flow problem is bounded from
below over the feasible region, the problem always has an optimal cycle
free solution.

Spanning tree solution

Given a cycle free solution, a spanning tree T is a tree that contains all
free arcs (and perhaps some restricted arcs).

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 9 / 16



Examples of spanning tree solutions

1

2

3

4

5

(2, 3)

(1, 2)

(3, 3)

(4, 4)

(1, 1)

(0, 5)

(1, 6)

(a) Graph G with flow f

1

2

3

4

5

(b) Free arcs

1

2

3

4

5

(c) Spanning tree 1

1

2

3

4

5

(d) Spanning tree 2

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 10 / 16



Optimality condition

A spanning tree solution partitions the arcs into three disjoint sets

B = {(i , j) ∈ A | (i , j) is a tree arc}
L = {(i , j) ∈ A | (i , j) is a nontree arc and fij = 0}
U = {(i , j) ∈ A | (i , j) is a nontree arc and fij = uij}

Optimality condition

A spanning tree structure (B, L,U) is an optimal spanning tree structure
of the minimum cost flow problem if it is feasible and for some node
potentials p, the reduced costs satisfy the following conditions:

1 cpij = cij + p(i)− p(j) = 0 for (i , j) ∈ B;

2 cpij ≥ 0 for (i , j) ∈ L (arc in G(f));

3 cpij ≤ 0 for (i , j) ∈ U (reverse arc in G(f)).

This is consistent with previous optimality conditions for min cost flow!

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 11 / 16



Network simplex method: procedure

Algorithm Network simplex method

1: Compute a feasible flow f
2: Find a spanning tree structure and a node potential
3: while optimality not satisfied do
4: Add a nontree arc violating optimality (entering arc) to T
5: Cancel the cycle and determine a leaving arc
6: Form a new spanning tree structure and compute the node potential
7: end while

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 12 / 16



Incidence matrix

1

2

3

4

5

(1, 2) (1, 3) (2, 4) (3, 2) (4, 3) (4, 5) (5, 3) (5, 4)


1 1 1 0 0 0 0 0 0
2 −1 0 1 −1 0 0 0 0
3 0 −1 0 1 −1 0 −1 0
4 0 0 −1 0 1 1 0 −1
5 0 0 0 0 0 −1 1 1

Incidence matrix H = {hij} of G = (N,A) with n nodes and m arcs

1 H ∈ Rn×m

2 Each row corresponds to a node, each column corresponds to an arc
3 hij = 1 if node i is the head of arc j (arc j has node i as head)
4 hij = −1 if node i is the tail of arc j (arc j has node i as tail)
5 Exactly one 1 and one −1 in each column

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 13 / 16



Flow Balance and Incidence matrix

minimize
∑

(i ,j)∈A

cij fij

subject to
∑

j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

0 ≤ fij ≤ uij for each (i , j) ∈ A.

Note that ∑
j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

can be written as
Hf = b

Rank of incidence matrix

Let H be the incidence of a directed graph G = (N,A). If G is connected,
then rank(H) = n − 1.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 14 / 16



Flow Balance and Incidence matrix

minimize
∑

(i ,j)∈A

cij fij

subject to
∑

j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

0 ≤ fij ≤ uij for each (i , j) ∈ A.

Note that ∑
j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

can be written as
Hf = b

Rank of incidence matrix

Let H be the incidence of a directed graph G = (N,A). If G is connected,
then rank(H) = n − 1.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 14 / 16



Flow Balance and Incidence matrix

minimize
∑

(i ,j)∈A

cij fij

subject to
∑

j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

0 ≤ fij ≤ uij for each (i , j) ∈ A.

Note that ∑
j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

can be written as
Hf = b

Rank of incidence matrix

Let H be the incidence of a directed graph G = (N,A). If G is connected,
then rank(H) = n − 1.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 14 / 16



Flow Balance and Incidence matrix

minimize
∑

(i ,j)∈A

cij fij

subject to
∑

j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

0 ≤ fij ≤ uij for each (i , j) ∈ A.

Note that ∑
j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = b(i) for all i ∈ {1, . . . , n}

can be written as
Hf = b

Rank of incidence matrix

Let H be the incidence of a directed graph G = (N,A). If G is connected,
then rank(H) = n − 1.

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 14 / 16



Network simplex method: interpretation

Algorithm Network simplex method

1: Compute a feasible flow f
2: Find a spanning tree structure and a node potential
3: while optimality not satisfied do
4: Add a nontree arc violating optimality (entering arc) to T
5: Cancel the cycle and determine a leaving arc
6: Form a new spanning tree structure and compute the node potential
7: end while

Spanning tree structure: basis matrix

Optimality condition: transformed objective function

Adding nontree arc: finding an entering variable

Cycle canceling: finding a leaving variable

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 15 / 16



Upcoming

Week 1-8 (AU4606 & AI4702):

Introduction (1 lecture)

Preparations (3 lectures)

basics of graph theory
algorithm complexity and data structure
graph search algorithm

Shortest path problems (3 lectures)

Maximum flow problems (5 lectures)

Minimum cost flow problems (3 lectures)

Introduction to multi-agent systems (1 lecture)

Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

Simplex and network simplex methods (this lecture)

Global minimum cut problems (3 lectures)

Minimum spanning tree problems (3 lectures)

Min Cost flow II (Lecture 11) AU4606 November 6, 2023 16 / 16


	Simplex method
	Network simplex method

