
Minimum Spanning Tree Problems

AU4606: Network Optimization

Xiaoming Duan
Department of Automation

Shanghai Jiao Tong University

November 27, 2023

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 1 / 19

Last few lectures

Global minimum cut problems

MA ordering
Randomization algorithms

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 2 / 19

Today

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

3 Matroids and greedy algorithms

Today

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

3 Matroids and greedy algorithms

What is a minimum spanning tree problem

Minimum spanning tree problem

Given an undirected connected graph G = (N,A) and costs cij for all arcs
(i , j) ∈ A, find a spanning tree T = (N,A′) of G such that

c(T) =
∑

(i ,j)∈T

cij

is minimized.

Spanning tree T = (N,A′)

A′ ⊂ A

T is a connected acyclic graph (tree)

Minimum spanning tree is not necessarily unique (e.g., a graph with
uniform arc weights)

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 3 / 19

Minimum spanning tree problem: examples

1 2

34

(a) Graph G

1 2

34

(b) Spanning tree

1 2

34

(c) Spanning tree

1 2

34

(d) Not a spanning tree

1 2

34

(e) Not a spanning tree

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 4 / 19

Today

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

3 Matroids and greedy algorithms

Optimality condition

Cut optimality conditions

A spanning tree T ∗ is a minimum spanning tree if and only if for every
tree arc (i , j) ∈ T ∗, cij ≤ ckℓ for every arc (k, ℓ) contained in the cut
formed by deleting (i , j) from T ∗.

Every arc in an MST is a min cost arc across the cut defined by removing it

Property of minimum spanning tree

Let F be a subset of arcs of some minimum spanning tree. Let S be a set
of nodes of some component of F . Then some minimum spanning tree
contains all arcs in F and a minimum cost arc (i , j) ∈ (S , S̄).

Path optimality conditions

A spanning tree T ∗ is a minimum spanning tree if and only if for every
nontree arc (k , ℓ) /∈ T ∗, cij ≤ ckℓ for every arc (k , ℓ) contained in the path
in T ∗ connecting nodes k and ℓ.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 5 / 19

Optimality condition

Cut optimality conditions

A spanning tree T ∗ is a minimum spanning tree if and only if for every
tree arc (i , j) ∈ T ∗, cij ≤ ckℓ for every arc (k, ℓ) contained in the cut
formed by deleting (i , j) from T ∗.

Every arc in an MST is a min cost arc across the cut defined by removing it

Property of minimum spanning tree

Let F be a subset of arcs of some minimum spanning tree. Let S be a set
of nodes of some component of F . Then some minimum spanning tree
contains all arcs in F and a minimum cost arc (i , j) ∈ (S , S̄).

Path optimality conditions

A spanning tree T ∗ is a minimum spanning tree if and only if for every
nontree arc (k , ℓ) /∈ T ∗, cij ≤ ckℓ for every arc (k , ℓ) contained in the path
in T ∗ connecting nodes k and ℓ.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 5 / 19

Kruskal’s algorithm: procedure

Start from a spanning tree, check path optimality condition, swap arcs

Algorithm Kruskal’s algorithm

1: Sort the arcs by their costs (e1, e2, . . . , em)
2: L← ∅, k ← 1
3: while |L| < n − 1 do
4: if Arcs in L ∪ {ek} do not form a cycle then
5: L← L ∪ {ek}
6: end if
7: k ← k + 1
8: end while

Correctness of Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree for undirected graphs.

Detecting cycles

Maintain a collection of node sets N1,N2, . . .

For (k , ℓ), if both k and ℓ belong to same set, then we have a cycle

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 6 / 19

Kruskal’s algorithm: procedure

Start from a spanning tree, check path optimality condition, swap arcs

Algorithm Kruskal’s algorithm

1: Sort the arcs by their costs (e1, e2, . . . , em)
2: L← ∅, k ← 1
3: while |L| < n − 1 do
4: if Arcs in L ∪ {ek} do not form a cycle then
5: L← L ∪ {ek}
6: end if
7: k ← k + 1
8: end while

Correctness of Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree for undirected graphs.

Detecting cycles

Maintain a collection of node sets N1,N2, . . .

For (k , ℓ), if both k and ℓ belong to same set, then we have a cycle

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 6 / 19

Kruskal’s algorithm: procedure

Start from a spanning tree, check path optimality condition, swap arcs

Algorithm Kruskal’s algorithm

1: Sort the arcs by their costs (e1, e2, . . . , em)
2: L← ∅, k ← 1
3: while |L| < n − 1 do
4: if Arcs in L ∪ {ek} do not form a cycle then
5: L← L ∪ {ek}
6: end if
7: k ← k + 1
8: end while

Correctness of Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree for undirected graphs.

Detecting cycles

Maintain a collection of node sets N1,N2, . . .

For (k , ℓ), if both k and ℓ belong to same set, then we have a cycle

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 6 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Kruskal’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 4

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 5

1

2

3

4

5

35

40

10

25

15

20
30

(g) Iteration 6
Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 7 / 19

Prim’s algorithm: procedure

Property of minimum spanning tree

Let F be a subset of arcs of some minimum spanning tree. Let S be a set
of nodes of some component of F . Then some minimum spanning tree
contains all arcs in F and a minimum cost arc (i , j) ∈ (S , S̄).

Algorithm Prim’s algorithm

1: S ← ∅
2: T ← ∅
3: Add an arbitrary node to S
4: while |S | < n do
5: (i∗, j∗) ∈ argmin(i,j)∈(S,S̄) cij
6: S ← S ∪ j∗

7: T ← T ∪ {(i∗, j∗)}
8: end while

Maintain a tree T on S , add arc with min cost to T from (S , S̄)

Correctness of Prim’s algorithm

Prim’s algorithm finds a minimum spanning tree for undirected graphs.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 8 / 19

Prim’s algorithm: procedure

Property of minimum spanning tree

Let F be a subset of arcs of some minimum spanning tree. Let S be a set
of nodes of some component of F . Then some minimum spanning tree
contains all arcs in F and a minimum cost arc (i , j) ∈ (S , S̄).

Algorithm Prim’s algorithm

1: S ← ∅
2: T ← ∅
3: Add an arbitrary node to S
4: while |S | < n do
5: (i∗, j∗) ∈ argmin(i,j)∈(S,S̄) cij
6: S ← S ∪ j∗

7: T ← T ∪ {(i∗, j∗)}
8: end while

Maintain a tree T on S , add arc with min cost to T from (S , S̄)

Correctness of Prim’s algorithm

Prim’s algorithm finds a minimum spanning tree for undirected graphs.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 8 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Prim’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

35

40

10

25

15

20
30

(b) Initialization

1

2

3

4

5

35

40

10

25

15

20
30

(c) Iteration 1

1

2

3

4

5

35

40

10

25

15

20
30

(d) Iteration 2

1

2

3

4

5

35

40

10

25

15

20
30

(e) Iteration 3

1

2

3

4

5

35

40

10

25

15

20
30

(f) Iteration 4

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 9 / 19

Sollin’s algorithm: procedure

Algorithm Sollin’s algorithm

1: Ni ← {i} for i ∈ N
2: T ← ∅
3: while |T | < n − 1 do
4: for each Nk do
5: (ik , jk) ∈ argmin(i,j)∈(Nk ,N̄k)

cij
6: end for
7: for each Nk do
8: if ik and jk belong to different trees then
9: Merge two trees and T ← T ∪ {(ik , jk)}

10: end if
11: end for
12: end while

Maintain multiple trees and merge them until getting a spanning tree

Correctness of Sollin’s algorithm

Sollin’s algorithm finds a minimum spanning tree for undirected graphs.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 10 / 19

Sollin’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

(b) Initialization

1

2

3

4

5

35

10

15

(c) Iteration 1

1

2

3

4

5

35

10

15

20

(d) Iteration 2

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 11 / 19

Sollin’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

(b) Initialization

1

2

3

4

5

35

10

15

(c) Iteration 1

1

2

3

4

5

35

10

15

20

(d) Iteration 2

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 11 / 19

Sollin’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

(b) Initialization

1

2

3

4

5

35

10

15

(c) Iteration 1

1

2

3

4

5

35

10

15

20

(d) Iteration 2

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 11 / 19

Sollin’s algorithm: example

1

2

3

4

5

35

40

10

25

15

20
30

(a) Graph G

1

2

3

4

5

(b) Initialization

1

2

3

4

5

35

10

15

(c) Iteration 1

1

2

3

4

5

35

10

15

20

(d) Iteration 2

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 11 / 19

Today

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

3 Matroids and greedy algorithms

Kruskal’s algorithm is “greedy”

Algorithm Kruskal’s algorithm

1: Sort the arcs by their costs (e1, e2, . . . , em)
2: L← ∅, k ← 1
3: while |L| < n − 1 do
4: if Arcs in L ∪ {ek} do not form a cycle then
5: L← L ∪ {ek}
6: end if
7: k ← k + 1
8: end while

Pick an arc with minimum cost at each iteration

Check if picked arcs constitute a cycle

When does greedy algorithm work?

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 12 / 19

Matroids

Matroid

A matroid is an ordered pair (E , I) where E is a finite set and I is a
collection of subsets of E that satisfies

1 ∅ ∈ I;
2 for any I1 ⊂ I2, if I2 ∈ I then I1 ∈ I;
3 if I1 ∈ I and I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2 \ I1 such

that I1 ∪ e ∈ I.

The sets in I are called independent sets

A maximal independent set is an independent set with max cadinality

Examples of matroids:
Matric matroid: let M be a real-valued matrix

1 E is the set of columns of M
2 I is the collection of subsets of linearly independent columns

Graphic matroid: let G be an undirected graph
1 E is the set of arcs
2 I is the collection of subsets of arcs that contain no cycle (forest)

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 13 / 19

Greedy works for matroid optimization

An optimization problem over matroids

Let (E , I) be a matroid and w : E → R be a function that assigns a cost
to each element of E . Define w(X) =

∑
x∈X w(x) for any nonempty

subset X ⊂ E .
Find a maximal independent set that has the minimum cost.

Algorithm Greedy algorithm

1: Sort the elements of E = {e1, . . . , en} so that w(e1) ≤ · · · ≤ w(en)
2: L← ∅,
3: for i = 1 : N do
4: if L ∪ {ei} is independent then
5: L← L ∪ {ei}
6: end if
7: end for

Greedy works

If (E , I) is a matroid, then greedy algorithm finds a maximal independent
set that has the minimum cost.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 14 / 19

Greedy works for matroid optimization

Greedy works

If (E , I) is a matroid, then greedy algorithm finds a maximal independent
set that has the minimum cost.

Greedy and only greedy works

Let I be a collection of subsets of a set E . Then (E , I) is a matroid if and
only if I has the following properties

1 ∅ ∈ I;
2 If I ∈ I and I ′ ⊂ I , then I ′ ∈ I;
3 For all weight functions w : E → R, the greedy algorithm finds a

maximal independent set that has the minimum cost.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 15 / 19

Greedy works for matroid optimization

Greedy works

If (E , I) is a matroid, then greedy algorithm finds a maximal independent
set that has the minimum cost.

Greedy and only greedy works

Let I be a collection of subsets of a set E . Then (E , I) is a matroid if and
only if I has the following properties

1 ∅ ∈ I;
2 If I ∈ I and I ′ ⊂ I , then I ′ ∈ I;
3 For all weight functions w : E → R, the greedy algorithm finds a

maximal independent set that has the minimum cost.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 15 / 19

A unit-time task scheduling problem

Problem statement

Given

1 a set S = {a1, . . . , an} of n unit-time tasks;

2 a set of n integer deadlines d(a1), . . . , d(an);

3 a set of nonnegative penalties w(a1), . . . ,w(an);

Find a schedule for S that minimizes total penalties of missed deadlines.

Given a schedule, a task is early if finished before ddl and late otherwise

Canonical form a task schedule

An arbitrary task schedule can be transformed into the canonical form
where early tasks precede late tasks.

Search for a task schedule reduces to search for a set of early tasks!

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 16 / 19

A unit-time task scheduling problem

Problem statement

Given

1 a set S = {a1, . . . , an} of n unit-time tasks;

2 a set of n integer deadlines d(a1), . . . , d(an);

3 a set of nonnegative penalties w(a1), . . . ,w(an);

Find a schedule for S that minimizes total penalties of missed deadlines.

Given a schedule, a task is early if finished before ddl and late otherwise

Canonical form a task schedule

An arbitrary task schedule can be transformed into the canonical form
where early tasks precede late tasks.

Search for a task schedule reduces to search for a set of early tasks!

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 16 / 19

A unit-time task scheduling problem

Independent set

A set of tasks is independent if there exists a schedule such that these
tasks are no late.

Independence can be checked efficiently

A set of tasks A is independent if and only if Nt(A) ≤ t where Nt(A) is
the number of tasks whose deadline is t or earlier for t = 0, 1, . . . , n.

Matroid of task scheduling

If S is a set of unit-time tasks with deadlines, and I is the set of all
independent sets of tasks, then (S , I) is a matroid.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 17 / 19

A unit-time task scheduling problem

Independent set

A set of tasks is independent if there exists a schedule such that these
tasks are no late.

Independence can be checked efficiently

A set of tasks A is independent if and only if Nt(A) ≤ t where Nt(A) is
the number of tasks whose deadline is t or earlier for t = 0, 1, . . . , n.

Matroid of task scheduling

If S is a set of unit-time tasks with deadlines, and I is the set of all
independent sets of tasks, then (S , I) is a matroid.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 17 / 19

A unit-time task scheduling problem

Independent set

A set of tasks is independent if there exists a schedule such that these
tasks are no late.

Independence can be checked efficiently

A set of tasks A is independent if and only if Nt(A) ≤ t where Nt(A) is
the number of tasks whose deadline is t or earlier for t = 0, 1, . . . , n.

Matroid of task scheduling

If S is a set of unit-time tasks with deadlines, and I is the set of all
independent sets of tasks, then (S , I) is a matroid.

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 17 / 19

A unit-time task scheduling problem

Minimizing penalty of late tasks = maximizing penalty of early ones!

Algorithm Greedy algorithm

1: Sort the tasks S = {a1, . . . , an} so that w(a1) ≥ · · · ≥ w(an)
2: T ← ∅,
3: for i = 1 : N do
4: if T ∪ {ai} is independent then
5: T ← T ∪ {ai}
6: end if
7: end for

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 18 / 19

Upcoming

Week 1-8 (AU4606 & AI4702):

Introduction (1 lecture)
Preparations (3 lectures)

basics of graph theory
algorithm complexity and data structure
graph search algorithm

Shortest path problems (3 lectures)

Maximum flow problems (5 lectures)

Minimum cost flow problems (3 lectures)

Introduction to multi-agent systems (1 lecture)

Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

Simplex and network simplex methods (1 lecture)

Global minimum cut problems (1.5 lectures)

Minimum spanning tree problems (1.5 lectures)

Submodular function optimization (2 lectures)

Optimal assignments and matching (2 lectures)

Min Spanning Tree (Lecture 13) AU4606 November 27, 2023 19 / 19

	Minimum spanning tree problem: formulation
	Algorithms for minimum spanning tree problems
	Matroids and greedy algorithms

