Minimum Spanning Tree Problems

AU4606: Network Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

November 27, 2023

- Global minimum cut problems
 - MA ordering
 - Randomization algorithms

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

3 Matroids and greedy algorithms

1 Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

Minimum spanning tree problem

Given an undirected connected graph G = (N, A) and costs c_{ij} for all arcs $(i, j) \in A$, find a spanning tree T = (N, A') of G such that

$$c(T) = \sum_{(i,j)\in T} c_{ij}$$

is minimized.

Spanning tree T = (N, A')

- $A' \subset A$
- T is a connected acyclic graph (tree)

Minimum spanning tree is not necessarily unique (e.g., a graph with uniform arc weights)

Minimum spanning tree problem: examples

Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

Cut optimality conditions

A spanning tree T^* is a minimum spanning tree if and only if for every tree arc $(i, j) \in T^*$, $c_{ij} \leq c_{k\ell}$ for every arc (k, ℓ) contained in the cut formed by deleting (i, j) from T^* .

Every arc in an MST is a min cost arc across the cut defined by removing it

Property of minimum spanning tree

Let *F* be a subset of arcs of some minimum spanning tree. Let *S* be a set of nodes of some component of *F*. Then some minimum spanning tree contains all arcs in *F* and a minimum cost arc $(i,j) \in (S, \overline{S})$.

Cut optimality conditions

A spanning tree T^* is a minimum spanning tree if and only if for every tree arc $(i, j) \in T^*$, $c_{ij} \leq c_{k\ell}$ for every arc (k, ℓ) contained in the cut formed by deleting (i, j) from T^* .

Every arc in an MST is a min cost arc across the cut defined by removing it

Property of minimum spanning tree

Let *F* be a subset of arcs of some minimum spanning tree. Let *S* be a set of nodes of some component of *F*. Then some minimum spanning tree contains all arcs in *F* and a minimum cost arc $(i, j) \in (S, \overline{S})$.

Path optimality conditions

A spanning tree T^* is a minimum spanning tree if and only if for every nontree arc $(k, \ell) \notin T^*$, $c_{ij} \leq c_{k\ell}$ for every arc (k, ℓ) contained in the path in T^* connecting nodes k and ℓ .

Kruskal's algorithm: procedure

• Start from a spanning tree, check path optimality condition, swap arcs

Kruskal's algorithm: procedure

• Start from a spanning tree, check path optimality condition, swap arcs

Algorithm Kruskal's algorithm

- 1: Sort the arcs by their costs (e_1, e_2, \ldots, e_m)
- 2: $L \leftarrow \emptyset$, $k \leftarrow 1$
- 3: while |L| < n 1 do
- 4: **if** Arcs in $L \cup \{e_k\}$ do not form a cycle **then**
- 5: $L \leftarrow L \cup \{e_k\}$
- 6: end if
- 7: $k \leftarrow k+1$
- 8: end while

Correctness of Kruskal's algorithm

Kruskal's algorithm finds a minimum spanning tree for undirected graphs.

Kruskal's algorithm: procedure

• Start from a spanning tree, check path optimality condition, swap arcs

Algorithm Kruskal's algorithm

- 1: Sort the arcs by their costs (e_1, e_2, \ldots, e_m)
- 2: $L \leftarrow \emptyset$, $k \leftarrow 1$
- 3: while |L| < n 1 do
- 4: **if** Arcs in $L \cup \{e_k\}$ do not form a cycle **then**
- 5: $L \leftarrow L \cup \{e_k\}$
- 6: end if
- 7: $k \leftarrow k+1$
- 8: end while

Correctness of Kruskal's algorithm

Kruskal's algorithm finds a minimum spanning tree for undirected graphs.

Detecting cycles

- Maintain a collection of node sets N_1, N_2, \ldots
- For (k, ℓ) , if both k and ℓ belong to same set, then we have a cycle

Min Spanning Tree (Lecture 13)

(a) Graph G

(a) Graph G

(b) Iteration 1

(a) Graph G

(b) Iteration 1

(c) Iteration 2

(d) Iteration 3

Prim's algorithm: procedure

Property of minimum spanning tree

Let *F* be a subset of arcs of some minimum spanning tree. Let *S* be a set of nodes of some component of *F*. Then some minimum spanning tree contains all arcs in *F* and a minimum cost arc $(i,j) \in (S, \overline{S})$.

Prim's algorithm: procedure

Property of minimum spanning tree

Let *F* be a subset of arcs of some minimum spanning tree. Let *S* be a set of nodes of some component of *F*. Then some minimum spanning tree contains all arcs in *F* and a minimum cost arc $(i,j) \in (S,\overline{S})$.

Algorithm Prim's algorithm

- 1: $S \leftarrow \emptyset$
- 2: $T \leftarrow \emptyset$
- 3: Add an arbitrary node to S
- 4: while |S| < n do
- 5: $(i^*, j^*) \in \operatorname{argmin}_{(i,j) \in (S,\overline{S})} c_{ij}$

$$6: \quad S \leftarrow S \cup j^*$$

- 7: $T \leftarrow T \cup \{(i^*, j^*)\}$
- 8: end while
- Maintain a tree T on S, add arc with min cost to T from (S, \overline{S})

Correctness of Prim's algorithm

Prim's algorithm finds a minimum spanning tree for undirected graphs.

Min Spanning Tree (Lecture 13)

8 / 19

(a) Graph G

(a) Graph G

(b) Initialization

(a) Graph G

(b) Initialization

(c) Iteration 1

(d) Iteration 2

Sollin's algorithm: procedure

Algorithm Sollin's algorithm

1:	$N_i \leftarrow \{i\}$ for $i \in N$
2:	$T \leftarrow \emptyset$
3:	while $ T < n - 1$ do
4:	for each N_k do
5:	$(i_k, j_k) \in \arg\min_{(i,j) \in (N_k, \bar{N}_k)} c_{ij}$
6:	end for
7:	for each N_k do
8:	if i_k and j_k belong to different trees then
9:	Merge two trees and $T \leftarrow T \cup \{(i_k, j_k)\}$
10:	end if
11:	end for
12:	end while

• Maintain multiple trees and merge them until getting a spanning tree

Correctness of Sollin's algorithm

Sollin's algorithm finds a minimum spanning tree for undirected graphs.

Min Spanning Tree (Lecture 13)

(a) Graph G

D Minimum spanning tree problem: formulation

2 Algorithms for minimum spanning tree problems

Algorithm Kruskal's algorithm

- 1: Sort the arcs by their costs (e_1, e_2, \ldots, e_m)
- 2: $L \leftarrow \emptyset$, $k \leftarrow 1$
- 3: while |L| < n 1 do
- 4: **if** Arcs in $L \cup \{e_k\}$ do not form a cycle **then**
- 5: $L \leftarrow L \cup \{e_k\}$
- 6: end if
- 7: $k \leftarrow k+1$
- 8: end while
- Pick an arc with minimum cost at each iteration
- Check if picked arcs constitute a cycle

When does greedy algorithm work?

Matroids

Matroid

A matroid is an ordered pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a collection of subsets of E that satisfies

 $\bullet\,$ The sets in ${\cal I}$ are called independent sets

• A maximal independent set is an independent set with max cadinality Examples of matroids:

- Matric matroid: let *M* be a real-valued matrix
 - **1** E is the set of columns of M
 - 2 ${\mathcal I}$ is the collection of subsets of linearly independent columns
- Graphic matroid: let G be an undirected graph
 - 1 E is the set of arcs
 - 2 \mathcal{I} is the collection of subsets of arcs that contain no cycle (forest)

13 / 19

Greedy works for matroid optimization

An optimization problem over matroids

Let (E, \mathcal{I}) be a matroid and $w : E \to \mathbb{R}$ be a function that assigns a cost to each element of E. Define $w(X) = \sum_{x \in X} w(x)$ for any nonempty subset $X \subset E$.

Find a maximal independent set that has the minimum cost.

Algorithm Greedy algorithm

- 1: Sort the elements of $E = \{e_1, \ldots, e_n\}$ so that $w(e_1) \leq \cdots \leq w(e_n)$
- 2: $L \leftarrow \emptyset$,
- 3: for i = 1 : N do
- 4: **if** $L \cup \{e_i\}$ is independent **then**
- 5: $L \leftarrow L \cup \{e_i\}$
- 6: end if
- 7: end for

Greedy works

If (E, \mathcal{I}) is a matroid, then greedy algorithm finds a maximal independent set that has the minimum cost.

Min Spanning Tree (Lecture 13)

Greedy works for matroid optimization

Greedy works

If (E, \mathcal{I}) is a matroid, then greedy algorithm finds a maximal independent set that has the minimum cost.

Greedy works

If (E, \mathcal{I}) is a matroid, then greedy algorithm finds a maximal independent set that has the minimum cost.

Greedy and only greedy works

Let \mathcal{I} be a collection of subsets of a set E. Then (E, \mathcal{I}) is a matroid if and only if \mathcal{I} has the following properties

- **2** If $I \in \mathcal{I}$ and $I' \subset I$, then $I' \in \mathcal{I}$;
- **3** For all weight functions $w : E \to \mathbb{R}$, the greedy algorithm finds a maximal independent set that has the minimum cost.

A unit-time task scheduling problem

Problem statement

Given

- 1) a set $S = \{a_1, \ldots, a_n\}$ of n unit-time tasks;
- **2** a set of *n* integer deadlines $d(a_1), \ldots, d(a_n)$;
- **3** a set of nonnegative penalties $w(a_1), \ldots, w(a_n)$;

Find a schedule for S that minimizes total penalties of missed deadlines.

Given a schedule, a task is *early* if finished before ddl and *late* otherwise

Canonical form a task schedule

An arbitrary task schedule can be transformed into the canonical form where early tasks precede late tasks.

A unit-time task scheduling problem

Problem statement

Given

- 1) a set $S = \{a_1, \ldots, a_n\}$ of n unit-time tasks;
- **2** a set of *n* integer deadlines $d(a_1), \ldots, d(a_n)$;
- **3** a set of nonnegative penalties $w(a_1), \ldots, w(a_n)$;

Find a schedule for S that minimizes total penalties of missed deadlines.

Given a schedule, a task is *early* if finished before ddl and *late* otherwise

Canonical form a task schedule

An arbitrary task schedule can be transformed into the canonical form where early tasks precede late tasks.

Search for a task schedule reduces to search for a set of early tasks!

A unit-time task scheduling problem

Independent set

A set of tasks is independent if there exists a schedule such that these tasks are no late.

Independent set

A set of tasks is independent if there exists a schedule such that these tasks are no late.

Independence can be checked efficiently

A set of tasks A is independent if and only if $N_t(A) \le t$ where $N_t(A)$ is the number of tasks whose deadline is t or earlier for t = 0, 1, ..., n.

Independent set

A set of tasks is independent if there exists a schedule such that these tasks are no late.

Independence can be checked efficiently

A set of tasks A is independent if and only if $N_t(A) \le t$ where $N_t(A)$ is the number of tasks whose deadline is t or earlier for t = 0, 1, ..., n.

Matroid of task scheduling

If S is a set of unit-time tasks with deadlines, and \mathcal{I} is the set of all independent sets of tasks, then (S, \mathcal{I}) is a matroid.

Minimizing penalty of late tasks = maximizing penalty of early ones!

Algorithm Greedy algorithm

- 1: Sort the tasks $S = \{a_1, \ldots, a_n\}$ so that $w(a_1) \ge \cdots \ge w(a_n)$
- 2: $T \leftarrow \emptyset$,
- 3: for i = 1 : N do
- 4: **if** $T \cup \{a_i\}$ is independent **then**
- 5: $T \leftarrow T \cup \{a_i\}$
- 6: end if
- 7: end for

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
 - basics of graph theory
 - algorithm complexity and data structure
 - graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (3 lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (1 lecture)
- Global minimum cut problems (1.5 lectures)
- Minimum spanning tree problems (1.5 lectures)
- Submodular function optimization (2 lectures)
- Optimal assignments and matching (2 lectures)