Basics of Graph Theory

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

September 14, 2023

- Seven Bridges of Königsberg
	- Euler's circuit theorem and its proof
- Problem we study in this course: minimum cost flow problems
	- Shortest path problem
	- Maximum flow problem
	- Assignment problem

Today

1 [Basics of graph theory](#page-3-0)

- **•** [Graphs](#page-4-0)
- [Paths, cycles, walks](#page-5-0)
- **•** [Degrees](#page-8-0)
- **•** [Subgraphs](#page-9-0)
- **[Connectivity](#page-10-0)**
- [Acyclic graphs](#page-13-0)
- **o** [Trees](#page-14-0)
- [Bipartite graphs](#page-20-0)
- 2 [Graph representations](#page-22-0)
	- [Adjacency matrix](#page-23-0)
	- [Incidence matrix](#page-25-0)
	- [Adjacency list](#page-29-0)

[Network transformation](#page-30-0)

Today

1 [Basics of graph theory](#page-3-0)

- **•** [Graphs](#page-4-0)
- [Paths, cycles, walks](#page-5-0)
- **•** [Degrees](#page-8-0)
- **•** [Subgraphs](#page-9-0)
- **[Connectivity](#page-10-0)**
- [Acyclic graphs](#page-13-0)
- **o** [Trees](#page-14-0)
- [Bipartite graphs](#page-20-0)
- [Graph representations](#page-22-0)
	- [Adjacency matrix](#page-23-0)
	- [Incidence matrix](#page-25-0)
	- **[Adjacency list](#page-29-0)**

[Network transformation](#page-30-0)

Notation and terminology: graphs

- A graph/network is a pair $G = (N, A)$
	- \bullet N: a set of nodes/vertices
	- \bullet A: a set of arcs/edges

A directed graph

An undirected graph

Notation and terminology: paths

In a directed graph $G = (N, A)$ 1 2 3 4 5 6 7

A path is a sequence of nodes (i_1, i_2, \ldots, i_r) such that \textbf{D} $\textit{i}_k \neq \textit{i}_{k'}$ for all $\textit{k}, \textit{k}' \in \{1, \dots, r\}$, i.e., no node repetition **2** $(i_k, i_{k+1}) \in A$ or $(i_{k+1}, i_k) \in A$, i.e., directions are ignored examples: $(1, 2, 3, 5)$, $(7, 5, 4, 2)$, $(1, 2, 3, 5, 2)$ A directed path is a sequence of nodes (i_1, i_2, \ldots, i_r) such that \textbf{D} $i_k \neq i_{k'}$ for all $k,k' \in \{1, \ldots, r\}$, i.e., no node repetition $\bigodot (i_k, i_{k+1}) \in A$, i.e., directions are respected examples: $(1, 2, 3, 6, 7)$, $(4, 5, 7)$, $(2, 5, 3, 1)$

Notation and terminology: cycles

In a directed graph $G = (N, A)$

- A cycle is a path (i_1, i_2, \ldots, i_r) such that $i_1 = i_r$ examples: (1, 2, 3, 1), (2, 4, 5, 2)
- A directed cycle is a directed path (i_1, i_2, \ldots, i_r) such that $i_1 = i_r$ examples: (2, 4, 5, 2)

In undirected graphs

- \bullet path $=$ directed path
- \bullet cycle $=$ directed cycle

Notation and terminology: walks

In a directed graph $G = (N, A)$

- A walk is a sequence of nodes (i_1, i_2, \ldots, i_r) such that $\bigodot (i_k, i_{k+1}) \in A$ or $(i_{k+1}, i_k) \in A$, i.e., directions are ignored examples: (1, 2, 3, 1, 2, 5)
- A directed walk is a sequence of nodes (i_1, i_2, \ldots, i_r) such that $\bigodot (i_k, i_{k+1}) \in A$, i.e., directions are respected examples: (1, 2, 4, 5, 2, 3, 6)
- A walk (i_1, i_2, \ldots, i_r) is closed if $i_1 = i_r$

Walks allow node repetition, paths do not

Notation and terminology: degrees

In a directed graph $G = (N, A)$

 \bullet The in-degree of a node *i* is the number of incoming arcs to *i*, e.g.,

- in-degree $d_{in}(1) = 0$
- in-degree $d_{\text{in}}(2) = 2$
- in-degree $d_{\text{in}}(7) = 3$

 \bullet The out-degree of node *i* is the number of outgoing arcs from *i*, e.g.,

- out-degree $d_{\text{out}}(3) = 1$
- out-degree $d_{\text{out}}(5) = 3$
- out-degree $d_{\text{out}}(6) = 1$

 \bullet The degree of a node *i* is the sum of its in-degree and out-degree

Notation and terminology: subgraphs

\n- A graph
$$
G' = (N', A')
$$
 is a subgraph of $G = (N, A)$ if
\n- **①** $N' \subset N$, and
\n- **②** $A' \subset A$
\n- A graph $G' = (N', A')$ is a spanning subgraph of $G = (N, A)$ if
\n- **①** $N' = N$, and
\n- **②** $A' \subset A$
\n

Notation and terminology: connectivity

(a) Connected, but not strongly

(b) Disconnected

Connectivity

- Nodes *i* and *j* are connected if there is at least a path (i.e., ignore directions) from *i* to *i*
- A graph is connected if every pair of nodes is connected, otherwise, disconnected

Strong connectivity

A directed graph is strongly connected if there is at least a directed path from every node to every other node

Notation and terminology: connectivity

(a) Connected, but not strongly

(b) Disconnected

Connectivity

- Nodes *i* and *j* are connected if there is at least a path (i.e., ignore directions) from *i* to *i*
- A graph is connected if every pair of nodes is connected, otherwise, disconnected

Strong connectivity

A directed graph is strongly connected if there is at least a directed path from every node to every other node

Connectivity vs strong connectivity: whether ignoring arc directions

Graph Theory Basics (Lecture 2) [AU4606/AI4702](#page-0-0) September 14, 2023 9 / 35

Notation and terminology: components

- A connected component of a disconnected graph G is a maximal connected subgraph of G
- A strongly connected component (SCC) of a directed graph G is a maximal strongly connected subgraph of G

Graph Theory Basics (Lecture 2) **[AU4606/AI4702](#page-0-0)** September 14, 2023 10 / 35

Notation and terminology: acyclic graphs & trees

• A graph is acyclic if it contains no directed cycle

• A tree is a connected graph that contains no cycle

Trees \implies acyclic graphs acyclic graphs \implies trees Graph Theory Basics (Lecture 2) [AU4606/AI4702](#page-0-0) September 14, 2023 11 / 35

Notation and terminology: more on trees

• A tree is a connected graph that contains no cycle

Notation and terminology: subtrees and forests

- A connected subgraph of a tree is a subtree
- A graph that contains no cycle is a forest
	- **1** not necessarily connected (compared with trees)
	- 2 cannot contain ANY cycle (compared with acyclic graphs)

A forest

Notation and terminology: rooted trees

A rooted tree is a tree with a special designated node, called its root

- Predecessor successor relationships
	- \bullet Each node *i* (except the root node) has a unique predecessor: next node on the unique path i to the root Examples: $Pred(1) = 3$, $Pred(7)=5$, $Pred(6)=4$
	- \bullet If node *i* is the predecrssor of node *i*, then *i* is a successor of *i* Examples: $Succ(3) = \{1, 2, 4\}$, $Succ(4) = \{5, 6, 8\}$
	- **3** The descendants of a node *i* consist of itself, its successors, successors of its successors, and so on

A unique path from *i* to root: $(i, Pred(i), Pred(Pred(i)), \dots)$

Notation and terminology: special rooted trees

 \bullet A tree is a directed out-tree rooted at node *i* if the unique path in the tree from node *i* to every other node is a directed path

 \bullet A tree is a directed in-tree rooted at node i if the unique path in the tree from any node to node i is a directed path

Graph Theory Basics (Lecture 2) **[AU4606/AI4702](#page-0-0)** September 14, 2023 15 / 35

Notation and terminology: spanning trees

(a) Directed graph G (b) A spanning subgraph

Recall: $G' = (N', A')$ is a spanning subgraph of $G = (N, A)$ if \bullet $N' = N$, and $2 \land \land \subset A$

Notation and terminology: spanning trees

Recall: $G' = (N', A')$ is a spanning subgraph of $G = (N, A)$ if \bullet $N' = N$, and $2 \land \land \subset A$

• A tree T is a spanning tree of G if T is a spanning subgraph of G

Notation and terminology: bipartite graphs

• A graph $G = (N, A)$ is a bipartite graph if we can partition its node set into two subsets N_1 and N_2 so that for each arc $(i, j) \in A$, either \bigcirc i \in N₁ and $i \in N_2$

② or
$$
i \in N_2
$$
 and $j \in N_1$

Notation and terminology: bipartite graphs

Property of bipartite graphs

A connected graph G is a bipartite graph if and only if every cycle (i.e., directions ignored) in G contains an even number of arcs.

Today

[Basics of graph theory](#page-3-0)

- **•** [Graphs](#page-4-0)
- [Paths, cycles, walks](#page-5-0)
- **•** [Degrees](#page-8-0)
- [Subgraphs](#page-9-0)
- **[Connectivity](#page-10-0)**
- [Acyclic graphs](#page-13-0)
- **o** [Trees](#page-14-0)
- [Bipartite graphs](#page-20-0)
- 2 [Graph representations](#page-22-0)
	- [Adjacency matrix](#page-23-0)
	- [Incidence matrix](#page-25-0)
	- [Adjacency list](#page-29-0)

Network representations: adjacency matrix

- Adjacency matrix $\mathcal{H} = \{h_{ii}\}\$ of graph $G = (N, A)$ with *n* nodes:
	- **D** $\mathcal{H} \in \{0,1\}^{n \times n}$ 2 Rows and columns correspond to nodes **3** $h_{ii} = 1$ if $(i, j) \in A$ \bullet h_{ij} = 0 if (*i*, *j*) \notin A
- It has n^2 elements, but only m of them are nonzero
- Space efficient only if the network is sufficiently dense

Network representations: adjacency matrix

\n- $$
(\mathcal{H}\mathbb{1}_n)_i = d_{\text{out}}(i)
$$
\n- $$
(\mathbb{1}_n^\top \mathcal{H})_i = d_{\text{in}}(i)
$$
\n

Number of walks and powers of adjacency matrix

Let ${\mathcal H}$ be an adjacency matrix of a directed graph $G.$ Then $({\mathcal H}^k)_{ij}$ equals the number of directed walks of length k from node i to node j .

Network representations: incidence matrix

- Incidence matrix $B = \{b_{ii}\}\;$ of $G = (N, A)$ with *n* nodes and *m* arcs
	- $B \in \mathbb{R}^{n \times m}$
	- 2 Each row corresponds to a node, each column corresponds to an arc
	- \bullet $b_{ii} = 1$ if node *i* is the head of arc *j* (arc *j* has node *i* as head)
	- \bullet $b_{ii} = -1$ if node *i* is the tail of arc *j* (arc *j* has node *i* as tail)
	- \bullet Exactly one 1 and one -1 in each column

Network representations: incidence matrix

Rank of incidence matrix

Let $B \in \mathbb{R}^{n \times m}$ be an incidence matrix of a connected directed graph G. Then rank(B) = $n - 1$.

Corollary: If $B \in \mathbb{R}^{n \times (n-1)}$ is the incidence matrix of a tree, then B has full column rank.

Cycles and incidence matrix

• Let $i_1 - e_1 - \cdots - i_k - e_k - i_1$ be a cycle (ignore directions) Let $x \in \mathbb{R}^m$ such that for $\ell \in \{1, \ldots, k\}$

$$
x_{e_\ell} = \begin{cases} 1, & \text{if } e_\ell \in A \\ -1 & \text{if } e_\ell \notin A \end{cases}
$$

and other elements of x are zero

• Then $Bx = 0$

Incidence matrix and minimum cost flow

minimize
$$
\sum_{(i,j)\in A} c_{ij}f_{ij}
$$

\nsubject to $\sum_{(i,j)\in A} f_{ij} - \sum_{(j,i)\in A} f_{ji} = b(i)$, for all $i \in N$
\n $I_{ij} \le f_{ij} \le u_{ij}$

- Let $f \in \mathbb{R}^m$ be the vector of flows
- **•** Then the flow balance equation can be written as

$$
Bf = b
$$

where $b = [b(1) \quad b(2) \quad \dots \quad b(n)]^{\top}$

The properties of the solution to the LP are affected by that of B

Network representations: adjacency list

• The node adjacency list $A(i)$ of a node i is the set of nodes j such that $(i, j) \in A$, i.e.,

$$
A(i) = \{j \in N \mid (i, j) \in A\}
$$

• $A(1) = \{2, 3\}$ • $A(2) = \{4\}$ • $A(3) = \{2\}$ • $A(4) = \{3, 5\}$ • $A(5) = \{3, 4\}$

Today

[Basics of graph theory](#page-3-0)

- **•** [Graphs](#page-4-0)
- [Paths, cycles, walks](#page-5-0)
- **•** [Degrees](#page-8-0)
- [Subgraphs](#page-9-0)
- **[Connectivity](#page-10-0)**
- [Acyclic graphs](#page-13-0)
- **o** [Trees](#page-14-0)
- [Bipartite graphs](#page-20-0)
- [Graph representations](#page-22-0)
	- [Adjacency matrix](#page-23-0)
	- [Incidence matrix](#page-25-0)
	- **[Adjacency list](#page-29-0)**

[Network transformation](#page-30-0)

Network transformation: removing nonzero lower bounds I

minimize
$$
\sum_{(i,j)\in A} c_{ij} f_{ij}
$$

\nsubject to $\sum_{(i,j)\in A} f_{ij} - \sum_{(j,i)\in A} f_{ji} = b(i)$, for all $i \in N$
\n $I_{ij} \le f_{ij} \le u_{ij}$

Introduce $f'_{ij} = f_{ij} - l_{ij}$, then $\,\,\bm{\mathsf{I}}\,$ Cost: $\,c_{ij}(f'_{ij}+l_{ij})=c_{ij}f'_{ij}+c_{ij}l_{ij},$ constant term can be ignored 2 Bounds: $0 \leq f'_{ij} \leq u_{ij} - l_{ij}$ \bigodot Flow balance for each node *i*

$$
\sum_{(i,j)\in A} (f'_{ij} + l_{ij}) - \sum_{(j,i)\in A} (f'_{ji} + l_{ji}) = b(i)
$$

$$
\implies \sum_{(i,j)\in A} f'_{ij} - \sum_{(j,i)\in A} f'_{ji} = b(i) - \sum_{(i,j)\in A} l_{ij} + \sum_{(j,i)\in A} l_{ji}
$$

 Φ Redefine $b'(i) = b(i) - \sum_{(i,j) \in A} l_{ij} + \sum_{(j,i) \in A} l_{ji}$

Mental picture

- The lower bound is equivalent to having a "preflow" on the arc
- Reduce the supply at *i* by l_{ii}
- Increase the supply at j by I_{ii}

Network transformation: negative cost I

 $i \rightarrow$ \rightarrow $j' \rightarrow$ $(c_{ij} < 0, u_{ij})$

Network transformation: negative cost I

• The cost can be written as

$$
c_{ij}f_{ij}=(-c_{ij})(-f_{ij})=(-c_{ij})(u_{ij}-f_{ij})+c_{ij}u_{ij}
$$

Network transformation: negative cost I

• The cost can be written as

$$
c_{ij}f_{ij}=(-c_{ij})(-f_{ij})=(-c_{ij})(u_{ij}-f_{ij})+c_{ij}u_{ij}
$$

• Introduce $f_{ii} = u_{ii} - f_{ii}$ Cost: $(-c_{ij})f_{ji} + c_{ij}u_{ij}$ Bounds: $0 \leq f_{ii} \leq u_{ii}$ Flow balance for node *i*

$$
\sum_{(i,k)\in A} f_{ik} - \sum_{(k,i)\in A} f_{ki} = b(i)
$$

$$
\implies \sum_{(i,k)\in A, k\neq j} f_{ik} - \sum_{(k,i)\in A} f_{ki} - f_{ji} = b(i) - u_{ij}
$$

 $\textcolor{red}{\bullet}$ Redefine $b'(i) = b(i) - u_{ij}$

Network transformation: negative cost II

• Introduce $f_{ii} = u_{ii} - f_{ii}$ **1** Cost: $(-c_{ii})f_{ii} + c_{ii}u_{ii}$ **2** Bounds: $0 \leq f_{ii} \leq u_{ii}$ **8** Flow balance for node *i* $\sum f_{ik} - \sum f_{ki} = b(i)$ (i,k)∈A (k,i)∈A \implies $\sum f_{ik} - \sum f_{ki} - f_{ji} = b(i) - u_{ij}$ $(i,k) \in A, k \neq j$ $(k,i) \in A$

4 Flow balance for node *j*

$$
\sum_{(j,k)\in A} f_{jk} - \sum_{(k,j)\in A} f_{kj} = b(j)
$$

$$
\implies \sum_{(j,k)\in A} f_{jk} + f_{ji} - \sum_{(k,j)\in A, k\neq i} f_{kj} = b(i) + u_{ij}
$$

Network transformation: negative cost III

\n- Introduce
$$
f_{ji} = u_{ij} - f_{ij}
$$
\n- Cost: $(-c_{ij})f_{ji} + c_{ij}u_{ij}$
\n- Bounds: $0 \le f_{ji} \le u_{ij}$
\n- Redefine $b'(i) = b(i) - u_{ij}$, $b'(j) = b(j) + u_{ij}$
\n

Mental picture

Network transformation: undirected edges I

 $i \rightarrow$ $j \rightarrow j$ $j \rightarrow$ (c_{ij}, u_{ij})

Setup:

- The flow can go either direction with cost c_{ii} per unit
- The total flow has an upper bound u_{ii}

"Naive" formulation:

- Define two variables $f_{ii} \geq 0$ and $f_{ii} \geq 0$
- The cost becomes $c_{ii}f_{ii} + c_{ii}f_{ii}$
- Add a constraint $f_{ii} + f_{ii} \le u_{ii}$

However, this is not in the standard form of minimum cost flow problem

Network transformation: undirected edges II

Property of the optimal solution to the naive formulation

If f^* is an optimal solution to the naive formulation, then we have

\n- **0** either
$$
f_{ij}^* > 0
$$
 and $f_{ji}^* = 0$,
\n- **2** or $f_{ij}^* = 0$ and $f_{ji}^* > 0$,
\n- **8** or $f_{ij}^* = 0$ and $f_{ji}^* = 0$.
\n

Thus, we can replace the constraint $f_{ii} + f_{ii} \le u_{ii}$ by $f_{ii} \le u_{ii}$ and $f_{ii} \le u_{ii}$

• Larger constraint set, but at the optimal, automatically $f_{ii} + f_{ii} \le u_{ii}$ Mental picture

(a) Undirected edge Graph Theory Basics (Lecture 2) **[AU4606/AI4702](#page-0-0)** September 14, 2023 32 / 35

Network transformation: capacities and costs on nodes

What if there are capacity constraints and costs on nodes?

Network transformation: capacities and costs on nodes

What if there are capacity constraints and costs on nodes?

Network transformation: capacities and costs on nodes

What if there are capacity constraints and costs on nodes?

This is called node splitting

Network transformation: parallel edges

• Combine two edges?

Network transformation: parallel edges

- Combine two edges?
- **·** Introduce an additional node!

Network transformation: parallel edges

- Combine two edges?
- Introduce an additional node!

By above discussions, we can assume single directed edge with nonnegative costs between nodes and zero capacities lower bound

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
	- basics of graph theory (this lecture)
	- algorithm complexity and data structure (next lecture)
	- graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (3 lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)