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Last time

Basics of graph theory

Graphs
Paths, cycles, walks
Degrees
Subgraphs
Connectivity
Components
Acyclic graphs
Trees
Bipartite graph

Graph representations

Adjacency matrix
Incidence matrix
Adjacency list

Network transformations
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Today

1 Complexity analysis
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Asymptotic notation

2 Data structure
Why data structure?
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Solving a problem

Building blocks for solving a computational problem in computers

A recipe, or algorithm: a step-by-step procedure

Means for encoding this procedure in a computational device

The application of the method to the data of a specific problem

Key question: how do we measure algorithms’ efficiency? (from 1970s)

Computing resources needed for executing an algorithm

1 Storage space (space complexity)
2 Running time (time complexity)

Time complexity is usually measured in terms of “basic” operations

Assignment steps

Arithmetic steps (e.g., addition, subtraction, multiplication, division)

Logical steps (e.g., conditional statement, comparisons)

# of steps performed by an algorithm = total # of basic operations
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Adding two matrices

Algorithm Adding two matrices A and B

1: for i = 1 : m do
2: for j = 1 : n do
3: C (i , j) = A(i , j) + B(i , j)
4: end for
5: end for

# of additions: mn

# of assignments: mn

Total operations: 2mn

Perhaps also # of accessing steps? 2mn
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Complexity measures

Algorithms are applied to a class of problems

One algorithm may take different time for different problem instances

An algorithm may solve ”good” instances quickly, but ”bad” slowly

Complexity measures

Empirical analysis: run the algorithm on many instances

1 Pros: no analysis on algorithms required
2 Cons: dependence on various factors; time consuming

Average-case analysis: analyze alg. on instances and take average

1 Pros: indicative when solving large number of different instances
2 Cons: distributions of problem instances; difficult analysis

Worst-case analysis: analyze algorithm on “hardest” instance

1 Pros: provides conclusive guarantees on how algorithms perform
2 Cons: pathological cases
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How to measure complexity

Algorithm Adding two matrices A and B

1: for i = 1 : m do
2: for j = 1 : n do
3: C (i , j) = A(i , j) + B(i , j)
4: end for
5: end for

Takes roughly 2mn basic operations (time steps)

Number of basic steps required depends on the problem instance

Measure the complexity of algorithms in terms of “problem sizes”
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Problem sizes

Algorithm Adding two matrices A and B

1: for i = 1 : m do
2: for j = 1 : n do
3: C (i , j) = A(i , j) + B(i , j)
4: end for
5: end for

Problem sizes: # of bits to encode the problem data

Adding matrices: mn log2M, where M largest element in A and B
Network flow problem

1 Number of nodes n
2 Number of arcs m
3 Arc cost coefficient cij
4 Arc capacity uij

problem size approximately:

n log n +m logm +m logC +m logU

where C = max(i ,j)∈A cij and U = max(i ,j)∈A uij
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Polynomial time algorithms

Polynomial-time algorithm: worst-case complexity is bounded by a
polynomial function of the problem size, i.e., it is a polynomial
function of n, m, logC , and logU

mn
n2

m + n logC

Strongly polynomial-time algorithm if does not involve logC or logU,

n
n2m

Otherwise, a weakly polynomial-time algorithm

m + n logC

Note: algorithms having complexity mnU is exponential!
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Algorithm complexity with asymptotic notations

We usually only care about the order of # of steps

Ignore (distracting) constant factors

Algorithm Adding two matrices A and B

1: for i = 1 : m do
2: for j = 1 : n do
3: C (i , j) = A(i , j) + B(i , j)
4: end for
5: end for

Takes roughly 2mn basic operations (time steps)
or 4mn steps

Usually written as O(mn)
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Asymptotic notation: big oh

Definition of Big Oh

Given two nonnegative functions f , g : R → R, we say that

f = O(g)

if

lim
x→∞

f (x)

g(x)
< ∞

Definition of Big Oh

For f , g : R → R, we say that f = O(g) if there exists a constant c > 0
and an x0 such that for all x ≥ x0, f (x) ≤ cg(x).

2x = O(x)
x = O(x2)
108x2 + 3x + 2 = O(x2)
2x + x10000 + 3 = O(2x)
c = O(1) for any c > 0
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Asymptotic notation: big omega

Suppose you want to make a statement of the form “the running time of
the algorithm is a least. . . ”. Can you say it is “at least O(n2)”?

NO!

Definition of Big Omega

Given two nonnegative functions f , g : R → R, we say that

f = Ω(g)

if there exists a constant c > 0 and an x0 such that for all x ≥ x0,
f (x) ≥ cg(x).

Examples

x2 = Ω(x)

2x = Ω(x2)
x

100 = Ω(100x + 25)

Big Oh and Big Omega

f (x) = O(g(x)) if and only if g(x) = Ω(f (x)).
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Asymptotic notation: little oh

Definition of Big Oh

Given two nonnegative functions f , g : R → R, we say that

f = O(g)

if

lim
x→∞

f (x)

g(x)
< ∞

What if we want to say some function is “strictly dominated” by another?

Definition of Little Oh

Given two nonnegative functions f , g : R → R, we say that

f = o(g)

if

lim
x→∞

f (x)

g(x)
= 0
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Asymptotic notation: little oh

Definition of Little Oh

Given two nonnegative functions f , g : R → R, we say that

f = o(g)

if

lim
x→∞

f (x)

g(x)
= 0

Examples

x0.99999 = o(x)

log x = o(xϵ) for any ϵ > 0
1
x = o(1)
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Asymptotic notation: little oh
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Asymptotic notation: little omega

Definition of Little Omega

Given two nonnegative functions f , g : R → R, we say that

f = ω(g)

if

lim
x→∞

g(x)

f (x)
= 0

Little Oh and Little Omega

f (x) = o(g(x)) if and only if g(x) = ω(f (x)).

Examples

x1.5 = ω(x)
√
x = ω(log2 x)
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Asymptotic notation: theta

Definition of Theta

Given two nonnegative functions f , g : R → R, then

f = Θ(g) if and only if f = O(g) and g = O(f )

Two functions grow equally fast

Examples

10x3 − 20x2 + 1 = Θ(x3)

π23x−7 + (2.7x133+x9−86)4√
x

− 1.083x = Θ(3x)
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Asymptotic notation: tilde

Definition of Tilde

Given two nonnegative functions f , g : R → R, we say f is asymptotically
equal to g , in symbols,

f ∼ g

if

lim
x→∞

g(x)

f (x)
= 1

Immediately

f ∼ g =⇒


f = O(g),

g = O(f ),

f = Θ(g).

1
2x

2 + 3x − 2 ∼ 1
2x

2

ex + 3x2 ∼ ex
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Asymptotic notation: confusions

We know that

2x = O(x2)

x2 = O(x2)

Therefore, we have 2x = x2?

More mathematically precise notation is

f ∈ O(g)

In fact, people write

f = O(g)

f ≤ O(g)

f is O(g)

f ∈ O(g)

to mean the same thing
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Asymptotic notation: intuitions

O “means” ≤

Ω “means” ≥

o “means” <

ω “means” >

Θ “means” =
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Asymptotic notation: exercises

O Ω o ω Θ

2n + log n = (n)

log n = (n)

√
n = (log300 n)

n2n = (n)

n2 = (1.01n)
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Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where ”sufficiently large” is so
big that the algorithm is never used in practice

Matrix multiplication

Naive algorithm takes O(n3)
practical Strassen algorithm takes O(n2.807)
Galactic Coppersmith–Winograd algorithm takes O(n2.373)

Are exponential algorithms always useless?

Simplex methods have exponential complexity, but used very often

Problem complexity vs algorithm complexity

Problem complexity: how much time does best algorithm take to solve

Algorithm complexity: how much time does algorithm solve worst case
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Why data structure?

Operations can take different time on different data structure

O(n) time

O(1) time
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Two important data structures: stacks

A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

Last-in-first-out

1 3 4 6 8

top
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Two important data structures: stacks

A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

Last-in-first-out

1 3 4 6 8 7

top

Add 7 to the stack
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Two important data structures: stacks

A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

Last-in-first-out

1 3 4 6 8

top

Remove 7 from the stack
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Two important data structures: stacks

A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

Last-in-first-out

1 3 4 6

top

Remove 8 from the stack
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Two important data structures: stacks

A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

Last-in-first-out

1 3 4

top

Remove 6 from the stack

Complexity & Data Stuctrue (Lecture 3) AU4606/AI4702 September 18, 2023 23 / 36



Two important data structures: queues

A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

First-in-first-out

1 3 4 6 8

front rear
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Two important data structures: queues

A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

First-in-first-out

1 3 4 6 8 7

front rear

7 enters the queue
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Two important data structures: queues

A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

First-in-first-out

3 4 6 8 7

front rear

1 leaves the queue
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Two important data structures: queues

A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

First-in-first-out

4 6 8 7

front rear

3 leaves the queue
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d-heaps: operations

Store and manipulate a collection H of elements when each element
i ∈ H has an associated real number key(i)

In shortest path problems, H is graph nodes, key(i) is path length

Basic operations

1 create(H): create an empty heap H
2 insert(i , H): insert an element i in the heap.
3 find-min(i , H): find an element i with the minimum key in the heap.
4 delete-min(i , H): delete the element i with the minimum key
5 delete(i , H): delete an arbitrary element i from the heap.
6 decrease-key(i , value, H): decrease the key(i) to a smaller value
7 increase-key(i , value, H): increase the key(i) to a larger value

The elements are stored as a rooted tree
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d-heaps: properties

5

7, 1

9

2, 2

83, 3 15

9, 4

21

5, 5

12

1, 6

16

4, 7

18

6, 8

29

8, 9

Keys of elements are shown in the rooted tree

1 Red indices are indices of elements (e.g., graph nodes)
2 Blue indices are indices of elements in the tree

Each node has at most d successors
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d-heaps: properties

5

7, 1

9

2, 2

83, 3 15

9, 4

21

5, 5

12

1, 6

16

4, 7

18

6, 8

29

8, 9

Depth of a node: the number of arcs in the unique path to the root
node 8 has depth 2

Nodes added in increasing order of depth values, and for the same
depth, from left to right

1 At most dk nodes in depth k
2 At most (dk+1 − 1)/(d − 1) nodes between depth 0 and k
3 The depth of an n-node d-heap is at most ⌊logd n⌋
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d-heaps: storing

5

7, 1

9

2, 2

83, 3 15

9, 4

21

5, 5

12

1, 6

16

4, 7

18

6, 8

29

8, 9

Using an array with last being the number of nodes
DHEAP=[
7 : 5, 2 : 9, 3 : 8, 9 : 15, 5 : 21, 1 : 12, 4 : 16, 6 : 18, 8 : 29

]
last = 9

Position array: position(i) = j , e.g., position(3) = 3, position(6) = 8
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d-heaps: accessing predecessors and successors

5

7, 1

9

2, 2

83, 3 15

9, 4

21

5, 5

12

1, 6

16

4, 7

18

6, 8

29

8, 9

Predecessor of node in position i is in position ⌈(i − 1)/d⌉
e.g., Pred(8)=⌈(8− 1)/3⌉=3; Pred(6)=⌈(6− 1)/3⌉=2

Successors of node in position i are in positions id − d + 2, . . . , id + 1
e.g., Succ(2)={5, 6, 7}

Complexity & Data Stuctrue (Lecture 3) AU4606/AI4702 September 18, 2023 29 / 36



d-heaps: accessing predecessors and successors

5

7, 1
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Predecessor of node in position i is in position ⌈(i − 1)/d⌉
e.g., Pred(6)= 3; Pred(1)=2

Successors of node in position i are in positions id − d + 2, . . . , id + 1
e.g., Succ(2)={1, 4, 5}
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d-heaps: order property
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Key of node i is less than or equal to each of its successors, i.e.,
key(i) ≤ key(j) for j ∈ Succ(i)

The root node of the d-heap has the smallest key
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d-heaps: swapping

Heap operations are reduced to swaps that take O(1) time

swap(i , j): swap the positions of i and j
before swap(2, 7):[
7 : 5, 2 : 9, 3 : 8, 9 : 15, 5 : 21, 1 : 12, 4 : 16, 6 : 18, 8 : 29

]
position(2) = 2, position(7) = 1
after swap(2, 7):[
2 : 9, 7 : 5, 3 : 8, 9 : 15, 5 : 21, 1 : 12, 4 : 16, 6 : 18, 8 : 29

]
position(2) = 1, position(7) = 2
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swap

(a) Before swap
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swap

(b) After swap
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d-heaps: restoring order property using swaps

Recall order property: key(i) ≤ key(j) for j ∈ Succ(i)

Suppose key(j) decreases and key(j) < key(i) for some j ∈ Succ(i)

sift up
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swap needed

(a) Before swap

5

2, 1

9

7, 2

83, 3 15

9, 4

21

5, 5

12

1, 6

16

4, 7

18

6, 8

29

8, 9

(b) After swap

key(2) decreases to 5

If node’s key decreases, takes at most O(logd n) to restore order
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d-heaps: restoring order property using swaps

Recall order property: key(i) ≤ key(j) for j ∈ Succ(i)

Suppose key(i) increases and key(i) > key(j) for some j ∈ Succ(i)

sift down
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swap needed

(a) Before swap
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(b) After swap

key(7) increases to 9

If node’s key increases, takes at most O(d · logdn) to restore order
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d-heaps: performing heap operations

1 find-min(i , H): root node, O(1)

2 insert(i , H): inset to the end, and swap up, O(logd n)

3 decrease-key(i , value, H): swap up O(logd n)

4 delete-min(i , H): make last node root, swap down O(d · logdn)
5 delete(i , H): fill with last node, swap down O(d · logdn)
6 increase-key(i , value, H): swap down O(d · logdn)

Sorting n elements?

1 Create a d-heap: add one at a time and swap up O(n logd n)

2 Find minimum element and delete it n times, O(n) + O(nd · logd n)
3 Total: O(nd · logd n)
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Upcoming

Week 1-8 (AU4606 & AI4702):

Introduction (1 lecture)

Preparations (3 lectures)

basics of graph theory
algorithm complexity and data structure (this lecture)
graph search algorithm (next lecture)

Shortest path problems (3 lectures)

Maximum flow problems (5 lectures)

Minimum cost flow problems (3 lectures)

Introduction to multi-agent systems (1 lecture)

Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

Simplex and network simplex methods (2 lectures)

Global minimum cut problems (3 lectures)

Minimum spanning tree problems (3 lectures)
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