Algorithm Complexity and Data Structure

AU4606: Network Optimization

Al4702: Network Intelligence and Optimization

Xiaoming Duan
Department of Automation
Shanghai Jiao Tong University

September 18, 2023

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 1/36

@ Basics of graph theory
e Graphs

Paths, cycles, walks

Degrees

Subgraphs

Connectivity

Components

Acyclic graphs

Trees

Bipartite graph

@ Graph representations

e Adjacency matrix
e Incidence matrix
e Adjacency list

@ Network transformations

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 2 /36

© Complexity analysis
@ Complexity measures
@ Asymptotic notation

© Data structure
@ Why data structure?
@ Stacks and queues
@ d-heaps

© Complexity analysis
@ Complexity measures
@ Asymptotic notation

Solving a problem

Building blocks for solving a computational problem in computers
@ A recipe, or algorithm: a step-by-step procedure
@ Means for encoding this procedure in a computational device

@ The application of the method to the data of a specific problem

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

Solving a problem

Building blocks for solving a computational problem in computers
@ A recipe, or algorithm: a step-by-step procedure
@ Means for encoding this procedure in a computational device

@ The application of the method to the data of a specific problem

Key question: how do we measure algorithms' efficiency? (from 1970s)
o Computing resources needed for executing an algorithm

@ Storage space (space complexity)
® Running time (time complexity)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 3/36

Solving a problem

Building blocks for solving a computational problem in computers
@ A recipe, or algorithm: a step-by-step procedure
@ Means for encoding this procedure in a computational device
@ The application of the method to the data of a specific problem

Key question: how do we measure algorithms' efficiency? (from 1970s)
o Computing resources needed for executing an algorithm

@ Storage space (space complexity)
® Running time (time complexity)

Time complexity is usually measured in terms of “basic” operations
@ Assignment steps
@ Arithmetic steps (e.g., addition, subtraction, multiplication, division)
o Logical steps (e.g., conditional statement, comparisons)

of steps performed by an algorithm = total # of basic operations

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 3/36

Adding two matrices

Algorithm Adding two matrices A and B

1. fori=1:mdo
22 forj=1:ndo

3 C(i,j) = A(i,j) + B(i,J)
4: end for
5. end for

@ £ of additions: mn
@ £ of assignments: mn

@ Total operations: 2mn

Perhaps also # of accessing steps? 2mn

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 4 /36

Complexity measures

@ Algorithms are applied to a class of problems
@ One algorithm may take different time for different problem instances

@ An algorithm may solve "good” instances quickly, but "bad" slowly

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 5/ 36

Complexity measures

@ Algorithms are applied to a class of problems
@ One algorithm may take different time for different problem instances

@ An algorithm may solve "good” instances quickly, but "bad" slowly

Complexity measures

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 5/ 36

Complexity measures

@ Algorithms are applied to a class of problems
@ One algorithm may take different time for different problem instances

@ An algorithm may solve "good” instances quickly, but "bad" slowly

Complexity measures
@ Empirical analysis: run the algorithm on many instances

@ Pros: no analysis on algorithms required
@ Cons: dependence on various factors; time consuming

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 5/ 36

Complexity measures

@ Algorithms are applied to a class of problems
@ One algorithm may take different time for different problem instances

@ An algorithm may solve "good” instances quickly, but "bad" slowly

Complexity measures
@ Empirical analysis: run the algorithm on many instances

@ Pros: no analysis on algorithms required
@ Cons: dependence on various factors; time consuming

@ Average-case analysis: analyze alg. on instances and take average

@ Pros: indicative when solving large number of different instances
@ Cons: distributions of problem instances; difficult analysis

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 5/ 36

Complexity measures

@ Algorithms are applied to a class of problems
@ One algorithm may take different time for different problem instances

@ An algorithm may solve "good” instances quickly, but "bad" slowly

Complexity measures
@ Empirical analysis: run the algorithm on many instances

@ Pros: no analysis on algorithms required
@ Cons: dependence on various factors; time consuming

@ Average-case analysis: analyze alg. on instances and take average

@ Pros: indicative when solving large number of different instances
@ Cons: distributions of problem instances; difficult analysis

@ Worst-case analysis: analyze algorithm on “hardest” instance

@ Pros: provides conclusive guarantees on how algorithms perform
@® Cons: pathological cases

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 5/ 36

How to measure complexity

Algorithm Adding two matrices A and B

1: fori=1:mdo
22 forj=1:ndo

3; C(i,j) = A(i,j) + B(i,))
4: end for
5. end for

Takes roughly 2mn basic operations (time steps)

@ Number of basic steps required depends on the problem instance

@ Measure the complexity of algorithms in terms of “problem sizes”

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 6 /36

Problem sizes

Algorithm Adding two matrices A and B

1: fori=1:mdo
22 forj=1:ndo
3: C(i,j) = A(i,j) + B(i,J)
4: end for
5. end for
Problem sizes: # of bits to encode the problem data
o Adding matrices: mnlog, M, where M largest element in A and B
@ Network flow problem
@ Number of nodes n
® Number of arcs m
© Arc cost coefficient ¢j;
O Arc capacity ujj
problem size approximately:

nlogn+ mlogm+ mlog C + mlog U

where C = max(j jyea ¢j and U = max; j)ea ujj

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 7/ 36

Polynomial time algorithms

@ Polynomial-time algorithm: worst-case complexity is bounded by a
polynomial function of the problem size, i.e., it is a polynomial
function of n, m, log C, and log U

@ mn

On2

e m+ nlog C
@ Strongly polynomial-time algorithm if does not involve log C or log U,

e nNn

o n2m

o Otherwise, a weakly polynomial-time algorithm
e m+ nlogC

Note: algorithms having complexity mnU is exponential!

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 8 /36

Algorithm complexity with asymptotic notations

@ We usually only care about the order of # of steps

@ Ignore (distracting) constant factors

Algorithm Adding two matrices A and B

1: fori=1:mdo

22 forj=1:ndo

3 C(i.j) = Alij) + B(ij)
4: end for

5. end for

Takes roughly 2mn basic operations (time steps)
or 4mn steps

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 9 /36

Algorithm complexity with asymptotic notations

@ We usually only care about the order of # of steps

@ Ignore (distracting) constant factors

Algorithm Adding two matrices A and B

1: fori=1:mdo
22 forj=1:ndo

3; C(i,j) = A(i,j) + B(i,))
4: end for
5. end for

Takes roughly 2mn basic operations (time steps)
or 4mn steps

Usually written as O(mn)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 9 /36

Definition of Big Oh
Given two nonnegative functions f, g : R — R, we say that

f=0(g)

Asymptotic notation: big oh

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 10 / 36

Asymptotic notation: big oh

Given two nonnegative functions f, g : R — R, we say that

Definition of Big Oh

For f,g : R — R, we say that f = O(g) if there exists a constant ¢ > 0
and an xp such that for all x > xp, f(x) < cg(x).

2x = O(x)
x = O(x?)
108x? + 3x + 2 = O(x?)
X 4 XlOOOO 4 3= O(2x)
c=0(1) forany ¢ >0

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 10 / 36

Asymptotic notation: big omega

Suppose you want to make a statement of the form “the running time of
the algorithm is a least...”. Can you say it is “at least O(n?)"?

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 11 / 36

Asymptotic notation: big omega

Suppose you want to make a statement of the form “the running time of
the algorithm is a least...”. Can you say it is “at least O(n?)"? NO!

Definition of Big Omega

Given two nonnegative functions f, g : R — R, we say that

f=Q(g)

if there exists a constant ¢ > 0 and an xg such that for all x > xg,
f(x) = cg(x).

Examples
e x? =Q(x)
0 2X =Q(x?)

o & = Q(100x + 25)

Big Oh and Big Omega

f(x) = O(g(x)) if and only if g(x) = Q(f(x)).

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 11/ 36

Asymptotic notation: little oh

Definition of Big Oh
Given two nonnegative functions f, g : R — R, we say that

f=0(g)

What if we want to say some function is “strictly dominated” by another?

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 12 / 36

Asymptotic notation: little oh

Given two nonnegative functions f, g : R — R, we say that

v

What if we want to say some function is “strictly dominated” by another?

Definition of Little Oh

Given two nonnegative functions f, g : R — R, we say that
f =o(g)
if .
lim ﬂ =0
% g(x)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 12 / 36

Asymptotic notation: little oh

Definition of Little Oh
Given two nonnegative functions f, g : R — R, we say that

f=o(g)
if . M L
x—00 g(x))
Examples

o x0:99999 — o(x)
o logx = o(x€) for any ¢ > 0
o L=0(1)

X

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 13 / 36

ymptotic notation: little oh

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

Li Chen ; Rasmus Kyng ; Yang P. Liu ; Richard Peng ; Maximilian Probst Gutenberg ; Sushant Sachdeva All Authors

17 841

Cites in Full (R < © a
Papers Text Views
Abstract Abstract:

Document Sections We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and
u 7

polynomially bounded integral demands, costs, and capacities in $m{1+o(1)}$ time. Our algorithm builds the flow through a
I. Introduction sequence of Sm*{1+0(1)}$ approximate undirected minimum-ratio cycles, each of which is computed and processed in

amortized Sm*{o(1)}$ time using a new dynamic graph data structure. Our framework extends to algorithms running in

II- Overview SmA{1+0(1))$ time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives
almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, p-norm

Authors flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.

Fiaures

Abstract—We give an algorithm that computes exact maximum
flows and minimum-cost flows on directed graphs with m
edges and polynomially bounded integral demands, costs, and
capacities in m't°®) time. Our algorithm builds the flow through
a sequence of m'T°() approximate undirected minimum-ratio
cycles, each of which is computed and processed in amortized
m°D time using a new dynamic graph data structure.

AU4606/A14702 September 18, 2023 14 / 36

Complexity & Data Stuctrue (Lectu

Asymptotic notation: little omega

Definition of Little Omega

Given two nonnegative functions f, g : R — R, we say that

Little Oh and Little Omega
f(x) = o(g(x)) if and only if g(x) = w(f(x)).

Examples
15

° x° = w(x)

o /x = w(log?x)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 15 / 36

Asymptotic notation: theta

Definition of Theta
Given two nonnegative functions f, g : R — R, then

f=0(g) if and only if f = O(g) and g = O(f)

Two functions grow equally fast

Examples
0 10x3 —20x2 +1 = O(x3)

o m23x T 4 GIILCBOR g 0g3x = ©(3%)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

Asymptotic notation: tilde

Definition of Tilde

Given two nonnegative functions f, g : R — R, we say f is asymptotically
equal to g, in symbols,
f~g
if
im &) _ 4
x—oo f(x)
Immediately
f = 0(g),
f~g = {g=0(f),
f=0(g)

° %x2+3x—2~%x2
@ & +3x2 ~ ¥

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 17 / 36

Asymptotic notation: confusions

We know that
e 2x = O(x?)
o x2 = 0(x?)

Therefore, we have 2x = x2?

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 18 / 36

Asymptotic notation: confusions

We know that
e 2x = O(x?)
o x2 = 0(x?)

Therefore, we have 2x = x2?

More mathematically precise notation is

feOo(g)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 18 / 36

Asymptotic notation: confusions

We know that
e 2x = O(x?)
o x2 = 0(x?)

Therefore, we have 2x = x2?

More mathematically precise notation is

In fact, people write
f=0(g)
f < 0(g)
fis O(g)
feO(g)

to mean the same thing

Complexity & Data Stuctrue (Lecture 3)

feOo(g)

AU4606/A14702

September 18, 2023

18 / 36

Asymptotic notation: intuitions

0] “means” <
Q “means” >
o “means” <
w “means” >
© “means” =

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 19 / 36

o Q 0o w ©
2n+logn= I:'(n)
S
NV —

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

o Matrix multiplication

o Naive algorithm takes O(n®)
e practical Strassen algorithm takes O(n?-8%7)
o Galactic Coppersmith-Winograd algorithm takes O(n?373)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

o Matrix multiplication

o Naive algorithm takes O(n®)
e practical Strassen algorithm takes O(n?-8%7)
o Galactic Coppersmith-Winograd algorithm takes O(n?373)

Are exponential algorithms always useless?

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

o Matrix multiplication

o Naive algorithm takes O(n®)
e practical Strassen algorithm takes O(n?-8%7)
o Galactic Coppersmith-Winograd algorithm takes O(n?373)

Are exponential algorithms always useless?

@ Simplex methods have exponential complexity, but used very often

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

o Matrix multiplication

o Naive algorithm takes O(n®)
e practical Strassen algorithm takes O(n?-8%7)
o Galactic Coppersmith-Winograd algorithm takes O(n%373)

Are exponential algorithms always useless?

@ Simplex methods have exponential complexity, but used very often

Problem complexity vs algorithm complexity

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

Mental break: galactic algorithm

Galactic algorithm (hiding constant factors)

@ A galactic algorithm is one that outperforms other algorithms for
problems that are sufficiently large, but where "sufficiently large” is so
big that the algorithm is never used in practice

o Matrix multiplication

o Naive algorithm takes O(n®)
e practical Strassen algorithm takes O(n?-8%7)
o Galactic Coppersmith-Winograd algorithm takes O(n%373)

Are exponential algorithms always useless?

@ Simplex methods have exponential complexity, but used very often

Problem complexity vs algorithm complexity
@ Problem complexity: how much time does best algorithm take to solve

@ Algorithm complexity: how much time does algorithm solve worst case

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 21/ 36

© Data structure
@ Why data structure?
@ Stacks and queues
@ d-heaps

Why data structure?

@ Operations can take different time on different data structure

Insert 5

[1]3[afe[s] | [s[1]3]a]e]8]
O(n) time

Helad

[l +—{s[F—a] e[F+—{8]]

Head ~

sl +—{a[F—s [F—{s[F+—{e[F— 2] |
O(1) time

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702

September 18, 2023

Two important data structures: stacks

@ A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

o Last-in-first-out

134|638

top

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 23 / 36

Two important data structures: stacks

@ A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

o Last-in-first-out

1/3(4|6|8|7

f

top

Add 7 to the stack

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 23 / 36

Two important data structures: stacks

@ A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

o Last-in-first-out

134|638

f

top

Remove 7 from the stack

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 23 / 36

Two important data structures: stacks

@ A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

o Last-in-first-out

1(314|6

f

top

Remove 8 from the stack

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 23 / 36

Two important data structures: stacks

@ A stack is a special kind of ordered list (or set) in which all insertions
and deletions take place at one end, called the top

o Last-in-first-out
1(3(4

f

top

Remove 6 from the stack

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 23 / 36

Two important data structures: queues

@ A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

o First-in-first-out

1/3/4|6|8

f T

front rear

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 24 / 36

Two important data structures: queues

@ A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

o First-in-first-out

1/3(4(6|8|7

T T

front rear

7 enters the queue

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 24 / 36

Two important data structures: queues

@ A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

o First-in-first-out

31416(8|7

T T

front rear

1 leaves the queue

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 24 / 36

Two important data structures: queues

@ A queue is another special kind of list, with elements inserted at one
end (the rear) and deleted from the other end (the front)

o First-in-first-out

416|187

T T

front rear

3 leaves the queue

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 24 / 36

d-heaps: operations

@ Store and manipulate a collection H of elements when each element
i € H has an associated real number key(/)
o In shortest path problems, H is graph nodes, key(/) is path length
@ Basic operations
@ create(H): create an empty heap H
@ insert(i, H): insert an element / in the heap.
© find-min(i, H): find an element / with the minimum key in the heap.
@ delete-min(i, H): delete the element i with the minimum key
@ delete(i, H): delete an arbitrary element i from the heap.
@ decrease-key(i, value, H): decrease the key(i) to a smaller value
@ increase-key(i, value, H): increase the key(i) to a larger value

@ The elements are stored as a rooted tree

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 25 / 36

d-heaps: properties

7,1

(12) (=)

55 1,6 4,7 6,8 8,9

o Keys of elements are shown in the rooted tree

@ Red indices are indices of elements (e.g., graph nodes)
@ Blue indices are indices of elements in the tree

@ Each node has at most d successors

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

d-heaps: properties

7,1

55 1,6 4,7 6,8 8,9

@ Depth of a node: the number of arcs in the unique path to the root
e node 8 has depth 2
@ Nodes added in increasing order of depth values, and for the same
depth, from left to right
@ At most d* nodes in depth k
@ At most (d“*1 —1)/(d — 1) nodes between depth 0 and k
© The depth of an n-node d-heap is at most |log, n]

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 27 / 36

d-heaps: storing

@ Using an array with /ast being the number of nodes
DHEAP=
[7:5,2:9,3:8,9:15 5:21, 1:12, 4:16, 6:18, 8:29]
last = 9
e Position array: position(/) = j, e.g., position(3) = 3, position(6) = 8

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 28 / 36

d-heaps: accessing predecessors and successors

@ Predecessor of node in position i is in position [(i —1)/d]
e.g., Pred(8)=[(8 — 1)/3]=3; Pred(6)=[(6 — 1)/3]=2

@ Successors of node in position i are in positions id —d +2,...,id +1
e.g., Succ(2)={5,6,7}

September 18, 2023 29 / 36

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702

d-heaps: accessing predecessors and successors

@ Predecessor of node in position i is in position [(i —1)/d]
e.g., Pred(6)= 3; Pred(1)=2

@ Successors of node in position i are in positions id —d +2,...,id +1
e.g., Succ(2)={1,4,5}

September 18, 2023 30 / 36

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702

d-heaps: order property

RN
ol ©

55 1,6 4,7 6,8

@ Key of node i is less than or equal to each of its successors, i.e.,
key(i) < key(j) for j € Succ(/)
@ The root node of the d-heap has the smallest key

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 31/ 36

d-heaps: swapping

@ Heap operations are reduced to swaps that take O(1) time

@ swap(/,/): swap the positions of / and
before swap(2,7):
[7:5,2:9,3:8,9:15 5:21, 1:12, 4:16, 6:18, 8:29]
position(2) = 2, position(7) =1
after swap(2,7):
[2:9,7:5,3:8, 9:15,5:21, 1:12, 4:16, 6:18, 8:29]
position(2) = 1, position(7) = 2

(a) Before swap (b) After swap

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 32 /36

d-heaps: restoring order property using swaps

@ Recall order property: key(i) < key(j) for j € Succ(/)
@ Suppose key(j) decreases and key(j) < key(i) for some j € Succ(/)
e sift up

(a) Before swap (b) After swap

key(2) decreases to 5

@ If node's key decreases, takes at most O(log, n) to restore order

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 33 /36

d-heaps: restoring order property using swaps

@ Recall order property: key(i) < key(j) for j € Succ(/)
@ Suppose key(i) increases and key(i) > key(j) for some j € Succ(/)
o sift down

(a) Before swap (b) After swap

key(7) increases to 9

e If node’s key increases, takes at most O(d - logyn) to restore order

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 34 / 36

d-heaps: performing heap operations

@ find-min(i, H): root node, O(1)

@ insert(i, H): inset to the end, and swap up, O(log, n)

© decrease-key(i, value, H): swap up O(log, n)

O delete-min(i, H): make last node root, swap down O(d - logyn)
O delete(i, H): fill with last node, swap down O(d - loggn)

O increase-key(i, value, H): swap down O(d - logyn)

Sorting n elements?

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

d-heaps: performing heap operations

@ find-min(i, H): root node, O(1)

@ insert(i, H): inset to the end, and swap up, O(log, n)

© decrease-key(i, value, H): swap up O(log, n)

O delete-min(i, H): make last node root, swap down O(d - logyn)
O delete(i, H): fill with last node, swap down O(d - loggn)

O increase-key(i, value, H): swap down O(d - logyn)

Sorting n elements?
© Create a d-heap: add one at a time and swap up O(nlogg n)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023

d-heaps: performing heap operations

@ find-min(i, H): root node, O(1)

@ insert(i, H): inset to the end, and swap up, O(log, n)

© decrease-key(i, value, H): swap up O(log, n)

O delete-min(i, H): make last node root, swap down O(d - logyn)
O delete(i, H): fill with last node, swap down O(d - loggn)

O increase-key(i, value, H): swap down O(d - logyn)

Sorting n elements?
© Create a d-heap: add one at a time and swap up O(nlogg n)
® Find minimum element and delete it n times, O(n) + O(nd - log4 n)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 35 / 36

d-heaps: performing heap operations

@ find-min(i, H): root node, O(1)

@ insert(i, H): inset to the end, and swap up, O(log, n)

© decrease-key(i, value, H): swap up O(log, n)

O delete-min(i, H): make last node root, swap down O(d - logyn)
O delete(i, H): fill with last node, swap down O(d - loggn)

O increase-key(i, value, H): swap down O(d - logyn)

Sorting n elements?
© Create a d-heap: add one at a time and swap up O(nlogg n)
® Find minimum element and delete it n times, O(n) + O(nd - log4 n)
© Total: O(nd - logy n)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 35 / 36

Week 1-8 (AU4606 & Al4702):

Introduction (1 lecture)

Preparations (3 lectures)

e basics of graph theory
e algorithm complexity and data structure (this lecture)
e graph search algorithm (next lecture)

@ Shortest path problems (3 lectures)
e Maximum flow problems (5 lectures)
e Minimum cost flow problems (3 lectures)
e Introduction to multi-agent systems (1 lecture)
@ Introduction to cloud networks (1 lecture)
Week 9-16 (AU4606):
@ Simplex and network simplex methods (2 lectures)
@ Global minimum cut problems (3 lectures)
@ Minimum spanning tree problems (3 lectures)

Complexity & Data Stuctrue (Lecture 3) AU4606/A14702 September 18, 2023 36 / 36

	Complexity analysis
	Complexity measures
	Asymptotic notation

	Data structure
	Why data structure?
	Stacks and queues
	d-heaps

