Graph Search Algorithms

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

September 21, 2023

- **•** Complexity analysis
	- Complexity measures
	- Asymptotic notation
- Data structure
	- Why data structure?
	- Stacks and queues
	- \bullet d-heaps

Today

[General search algorithms](#page-3-0)

- **•** [Forward search](#page-5-0)
- **•** [Reverse search](#page-24-0)

2 [Particular search algorithms](#page-27-0)

- **•** [Breadth-first search](#page-28-0)
- [Depth-first search](#page-42-0)

3 [Applications](#page-56-0)

- **[Strong connectivity](#page-57-0)**
- [Topological ordering](#page-65-0)
- **•** [Determining bipartite graphs](#page-68-0)
- **•** [Finding Eulerian circuits in undirected graphs](#page-70-0)

Today

1 [General search algorithms](#page-3-0)

- **•** [Forward search](#page-5-0)
- **•** [Reverse search](#page-24-0)

[Particular search algorithms](#page-27-0)

- **•** [Breadth-first search](#page-28-0)
- [Depth-first search](#page-42-0)

[Applications](#page-56-0)

- [Strong connectivity](#page-57-0)
- [Topological ordering](#page-65-0)
- [Determining bipartite graphs](#page-68-0) \bullet
- **•** [Finding Eulerian circuits in undirected graphs](#page-70-0)
- Search algorithms are techniques to find nodes with special properties **1** Find all nodes that are reachable by directed paths from a specific node 2 Find all the nodes that can reach a specific node along directed paths • They can also be utilized (as subroutines) to certify graph properties **1** Check connectivity and find strongly connected components **2** Identify a directed cycle, if no exists, find a topological ordering **3** Determining whether a given network is bipartite • Some search algorithms find certain objects in graphs
	- **1** Find Eulerian circuits

Search algorithms: nodes reachable from a source

- A typical search process
	- **1** Start from an initial node
	- **2** Explore the neighboring nodes through directed edges
	- **3** Explore the neighbors of neighbors and so on
	- **4** Stop when all nodes are explored or a node of interest is found

Search algorithms: nodes reachable from a source

A typical search process

- **1** Start from an initial node
- **2** Explore the neighboring nodes through directed edges
- **3** Explore the neighbors of neighbors and so on
- **4** Stop when all nodes are explored or a node of interest is found

Some details

- How to know if nodes are explored or not
	- Designate all the nodes as being in one of the two states
		- \bullet marked: explored
		- **2** unmarked: yet to be explored
	- Mark an unmarked node j if j is explored from marked i
- Predecessor relationship: when *i* is marked from *i*, set pred(*i*) = *i*
- Traversal order: record the order the marked nodes are traversed

Search algorithms: nodes reachable from a source

Algorithm Search

- 1: Unmark all nodes in N
- 2: Mark source node s
- 3: $pred(s) \leftarrow 0$
- 4: next← 1
- 5: order(s) \leftarrow 1
- 6: LIST← $\{s\}$
- 7: while LIST $\neq \emptyset$ do
- 8 Select a node *i* from LIST
- 9: if node *i* is incident to an admissible arc (i, j) then
- 10: Mark node j
- 11: $pred(j) \leftarrow i$
- 12: next←next+1
- 13: order(j)←next
- 14: Add j to LIST
- 15: else
- 16: Delete node i from LIST
- 17: end if
- 18: end while

Admissible arc (i, j) : node i is marked, and node i is not

- **2** pred $(1) \leftarrow 0$
- \bullet next \leftarrow 1
- \bullet order(1) \leftarrow 1

- **1** Pick node 1 from LIST
- \bullet Node 1 has an admissible arc $(1, 2)$
- **8** Mark node 2
- \bullet pred(2) \leftarrow 1
- **6** next \leftarrow 2
- **6** order(2) \leftarrow next
- Add 2 to LIST

$$
\mathsf{LIST}{=}\{1,2\}
$$

- **1** Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 5)$
- **8** Mark node 5
- \bullet pred(5) \leftarrow 2
- **6** next \leftarrow 3
- \bullet order(5) \leftarrow next
- Add 5 to LIST

$$
LIST = \{1, 2, 5\}
$$

- **1** Pick node 1 from LIST
- \bullet Node 1 has an admissible arc $(1,3)$
- **8** Mark node 3
- \bullet pred(3) \leftarrow 1
- θ next \leftarrow 4
- $\mathbf{6}$ order(3) \leftarrow next
- Add 3 to LIST

$$
LIST = \{1, 2, 3, 5\}
$$

- Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 4)$
- Mark node 4
- \bigcirc pred(4) \leftarrow 2
- next ← 5
- $\mathbf{6}$ order(4) \leftarrow next
- Add 4 to LIST

$$
LIST = \{1, 2, 3, 4, 5\}
$$

- Pick node 1 from LIST
- **2** Node 1 has no admissible arcs
- Delete node 1 from LIST

$$
LIST = \{2, 3, 4, 5\}
$$

- Pick node 3 from LIST
- **2** Node 3 has no admissible arcs
- Delete node 3 from LIST

$$
LIST = \{2, 4, 5\}
$$

- Pick node 5 from LIST
- \bullet Node 5 has an admissible arc $(5, 6)$
- Mark node 6
- \bullet pred(6) \leftarrow 5
- **6** next \leftarrow 6
- \bullet order(6) \leftarrow next
- Add 6 to LIST

$$
LIST={2,4,5,6}
$$

- Pick node 4 from LIST
- **2** Node 4 has no admissible arcs
- Delete node 4 from LIST

$$
LIST={2,5,6}
$$

- Pick node 6 from LIST
- **2** Node 6 has no admissible arcs
- Delete node 6 from LIST

$$
LIST = \{2, 5\}
$$

- Pick node 2 from LIST
- **2** Node 2 has no admissible arcs
- Delete node 2 from LIST

$$
LIST = \{5\}
$$

- Pick node 5 from LIST
- ² Node 5 has no admissible arcs
- Delete node 5 from LIST

Search tree

The tree defined by the predecessor indices consisting of marked nodes (why is it a tree?)

Search tree

The tree defined by the predecessor indices consisting of marked nodes (why is it a tree?)

Correctness

- Soundness: all marked nodes are reachable
- ² Completeness: all reachable nodes are marked

Search tree

The tree defined by the predecessor indices consisting of marked nodes (why is it a tree?)

Correctness

- Soundness: all marked nodes are reachable
- ² Completeness: all reachable nodes are marked

Time complexity

- The search algorithm runs in $O(m + n)$ times, in iteration, either
	- **1** Find an admissible arc and mark a node, $O(m)$
	- **2** Does not find an admissible arc and delete a node, $O(n)$

Search tree

The tree defined by the predecessor indices consisting of marked nodes (why is it a tree?)

Correctness

- **1** Soundness: all marked nodes are reachable
- **2** Completeness: all reachable nodes are marked

Time complexity

- The search algorithm runs in $O(m + n)$ times, in iteration, either
	- **1** Find an admissible arc and mark a node, $O(m)$
	- **2** Does not find an admissible arc and delete a node, $O(n)$

How to select a node from LIST is not specified!

- **•** Implementation using queues: breadth-first search
- Implementation using stacks: depth-first search

How do we search for the set of nodes that can reach a destination node t?

How do we search for the set of nodes that can reach a destination node t?

- **1** Initialize LIST as LIST = $\{t\}$
- ² When examining a node, scan the incoming arcs
- **3** Designate arc (i, j) as admissible if i is unmarked and j is marked

How do we search for the set of nodes that can reach a destination node t?

- **1** Initialize LIST as LIST $= \{t\}$
- **2** When examining a node, scan the incoming arcs
- **3** Designate arc (i, j) as admissible if i is unmarked and j is marked

Forward search vs reverse search

- Forward search creates a directed out-tree rooted at source s
- \bullet Reverse search creates a directed in-tree rooted at destination t

Today

[General search algorithms](#page-3-0)

- **•** [Forward search](#page-5-0)
- [Reverse search](#page-24-0)

2 [Particular search algorithms](#page-27-0)

- **•** [Breadth-first search](#page-28-0)
- [Depth-first search](#page-42-0)

[Applications](#page-56-0)

- [Strong connectivity](#page-57-0)
- [Topological ordering](#page-65-0)
- [Determining bipartite graphs](#page-68-0) \bullet
- **•** [Finding Eulerian circuits in undirected graphs](#page-70-0)

Breadth-first search: procedure

• If LIST is maintained as a queue (FIFO), we get breadth-first search

Explore all neighbors, then all neighbors of neighbors and so on

- **1** Mark node 1 (source) **2** pred $(1) \leftarrow 0$
- \bullet next \leftarrow 1
- \bullet order(1) \leftarrow 1

- **1** Pick node 1 from LIST
- \bullet Node 1 has an admissible arc $(1, 2)$
- **8** Mark node 2
- \bullet pred(2) \leftarrow 1
- **6** next \leftarrow 2
- **6** order(2) \leftarrow next
- Add 2 to LIST

$$
\mathsf{LIST}{=}\{1,2\}
$$

- **1** Pick node 1 from LIST
- \bullet Node 1 has an admissible arc $(1,3)$
- **8** Mark node 3
- \bullet pred(3) \leftarrow 1
- **6** next \leftarrow 3
- $\mathbf{6}$ order(3) \leftarrow next
- Add 3 to LIST

$$
\mathsf{LIST}{=}\{1,2,3\}
$$

- Pick node 1 from LIST
- **2** Node 1 has no admissible arcs
- Delete node 1 from LIST

$$
LIST = \{2,3\}
$$

- **1** Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 4)$
- **8** Mark node 4
- \bigcirc pred(4) \leftarrow 2
- θ next \leftarrow 4
- $\mathbf{6}$ order(4) \leftarrow next
- Add 4 to LIST

$$
LIST = \{2, 3, 4\}
$$

- Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 5)$
- Mark node 5
- \bullet pred(5) \leftarrow 2
- next ← 5
- \bullet order(5) \leftarrow next
- Add 5 to LIST

$$
LIST = \{2, 3, 4, 5\}
$$

- Pick node 2 from LIST
- **2** Node 2 has no admissible arcs
- Delete node 2 from LIST

$$
LIST = \{3, 4, 5\}
$$

- Pick node 3 from LIST
- **2** Node 3 has no admissible arcs
- Delete node 3 from LIST

$$
LIST = \{4, 5\}
$$

- Pick node 4 from LIST
- \bullet Node 4 has an admissible arc $(4, 6)$
- Mark node 6
- \bullet pred(6) \leftarrow 4
- **6** next \leftarrow 6
- $\mathbf{6}$ order(6) \leftarrow next
- Add 6 to LIST

$$
LIST={4,5,6}
$$

- Pick node 4 from LIST
- **2** Node 4 has no admissible arcs
- Delete node 4 from LIST

$$
LIST = \{5, 6\}
$$

- Pick node 5 from LIST
- **2** Node 5 has no admissible arcs
- Delete node 5 from LIST

$$
LIST = \{6\}
$$

- Pick node 6 from LIST
- ² Node 6 has no admissible arcs
- Delete node 6 from LIST

Breadth-first search: properties

Algorithm Search

- 1: Unmark all nodes in ^N
- 2: Mark source node ^s
- 3: $pred(s) \leftarrow 0$
- 4: next← 1
- 5: order(s) \leftarrow 1
- 6: LIST← $\{s\}$
- 7: while LIST≠ Ø do
- 8: Select a node *i* from LIST in a first-in-first-out manner
9: **if** node *i* is incident to an admissible arc *(i, i)* then
- if node i is incident to an admissible arc (i, i) then
- 10: Mark node ^j
- 11: pred $(i) \leftarrow i$
- 12: next←next+1
- 13: order(j)←next
- 14: Add j to LIST
15: **else**
- else
- 16: Delete node i from LIST 17 end if
- end if
- 18: end while

Properties of BFS

In a breadth-first search tree, the tree path from the source node s to any node i is a shortest path (i.e., contains the fewest number of arcs among all paths from s to i).

Depth-first search: procedure

- 1: Unmark all nodes in ^N 2: Mark source node ^s
- 3: $pred(s) \leftarrow 0$
- 4: next← 1
- 5: order $(s) \leftarrow 1$
- 6: LIST← $\{s\}$
- 7: while LIST \neq \emptyset do
- 8: Select a node ⁱ from LIST in a first-in-last-out manner
- 9: if node *i* is incident to an admissible arc (i, j) then
- 10: Mark node ^j
- 11: $pred(j) \leftarrow i$
- 12: next←next+1
- 13: order(j)←next
- 14: Add *i* to LIST
- 15: else
- 16: Delete node i from LIST 17: end if
- end if
- 18: end while
	- If LIST is maintained as a stack (FILO), we get depth-first search
	- Create a path as long as possible, until no new node can be marked

- **1** Mark node 1 (source) **2** pred $(1) \leftarrow 0$
- \bullet next \leftarrow 1
- \bullet order(1) \leftarrow 1

 $LIST = {1}$

- **1** Pick node 1 from LIST
- \bullet Node 1 has an admissible arc $(1, 2)$
- **8** Mark node 2
- \bullet pred(2) \leftarrow 1
- **6** next \leftarrow 2
- **6** order(2) \leftarrow next
- Add 2 to LIST

$$
\mathsf{LIST}{=}\{1,2\}
$$

- **1** Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 3)$
- **8** Mark node 3
- \bullet pred(3) \leftarrow 2
- **6** next \leftarrow 3
- $\mathbf{6}$ order(3) \leftarrow next
- Add 3 to LIST

$$
\mathsf{LIST}{=}\{1,2,3\}
$$

- **1** Pick node 3 from LIST
- \bullet Node 3 has an admissible arc $(3, 4)$
- **8** Mark node 4
- \bullet pred(4) \leftarrow 3
- θ next \leftarrow 4
- \bigcirc order(4) \leftarrow next
- Add 4 to LIST

$$
LIST = \{1, 2, 3, 4\}
$$

- **1** Pick node 4 from LIST
- \bullet Node 4 has an admissible arc $(4, 6)$
- **8** Mark node 6
- \bullet pred(6) \leftarrow 4
- 6 next ← 5
- $\mathbf{6}$ order(6) \leftarrow next
- Add 4 to LIST

$$
LIST={1, 2, 3, 4, 6}
$$

- Pick node 6 from LIST
- **2** Node 6 has no admissible arcs
- Delete node 6 from LIST

$$
LIST = \{1, 2, 3, 4\}
$$

- Pick node 4 from LIST
- **2** Node 4 has no admissible arcs
- Delete node 4 from LIST

$$
\mathsf{LIST}{=}\{1,2,3\}
$$

- Pick node 3 from LIST
- **2** Node 3 has no admissible arcs
- Delete node 3 from LIST

$$
\mathsf{LIST}{=}\{1,2\}
$$

- Pick node 2 from LIST
- \bullet Node 2 has an admissible arc $(2, 5)$
- Mark node 5
- \bullet pred(5) \leftarrow 2
- next ← 5
- \bullet order(5) \leftarrow next
- Add 5 to LIST

$$
{\sf LIST}{=}\{1,2,5\}
$$

- Pick node 5 from LIST
- **2** Node 5 has no admissible arcs
- Delete node 5 from LIST

$$
\mathsf{LIST}{=}\{1,2\}
$$

- Pick node 2 from LIST
- **2** Node 2 has no admissible arcs
- Delete node 2 from LIST

$$
\mathsf{LIST}{=}\{1\}
$$

- Pick node 1 from LIST
- **2** Node 1 has no admissible arcs
- Delete node 1 from LIST

Depth-first search: properties

Algorithm Search

- 1: Unmark all nodes in ^N
- 2: Mark source node ^s
- 3: $pred(s) \leftarrow 0$
- 4: next ← 1
- 5: order $(s) \leftarrow 1$
- 6: LIST← $\{s\}$
- 7: while LIST \neq \emptyset do
- 8: Select a node ⁱ from LIST in a first-in-last-out manner
- 9: if node *i* is incident to an admissible arc (i, j) then
- 10: Mark node ^j
- 11: pred $(i) \leftarrow i$
- 12: next←next+1
- 13: order(j)←next
- 14: Add j to LIST
15: **else**
- 15: **else**
16: D
- 16: Delete node i from LIST 17: end if
- end if
- 18: end while

Properties of DFS

1 If node *i* is a descendant of node *i* and $j \neq i$, then order(*i*) > order(*i*)

2 All the descendants of any node are ordered consecutively in sequence

Today

[General search algorithms](#page-3-0)

- **•** [Forward search](#page-5-0)
- [Reverse search](#page-24-0)

[Particular search algorithms](#page-27-0)

- **•** [Breadth-first search](#page-28-0)
- [Depth-first search](#page-42-0)

3 [Applications](#page-56-0)

- **[Strong connectivity](#page-57-0)**
- **•** [Topological ordering](#page-65-0)
- [Determining bipartite graphs](#page-68-0)
- **•** [Finding Eulerian circuits in undirected graphs](#page-70-0)

Start from an arbitrary node s in $G = (N, A)$

- A forward search finds set of nodes U reachable from s
- \bullet A reverse search finds set of nodes V that can reach s

Start from an arbitrary node s in $G = (N, A)$

- A forward search finds set of nodes U reachable from s
- A reverse search finds set of nodes V that can reach s

Is it enough?

Start from an arbitrary node s in $G = (N, A)$

- \bullet A forward search finds set of nodes U reachable from s
- \bullet A reverse search finds set of nodes V that can reach s

Is it enough? YES!

Determining strong connectivity

A graph $G = (N, A)$ is strongly connected if and only if $U = V = N$.

Transitive closure

A transitive closure of a graph $G = (N, A)$ is a matrix $\Gamma = \gamma_{ij}$ defined as follows

 $\gamma_{ij} =$ $\int 1$, if graph G contains a directed path form node *i* to node *j* 0, otherwise.

Transitive closure

A transitive closure of a graph $G = (N, A)$ is a matrix $\Gamma = \gamma_{ii}$ defined as follows

 $\gamma_{ij} =$ $\int 1$, if graph G contains a directed path form node *i* to node *j* 0, otherwise.

How to find transitive closure of a graph in $O(mn)$ time?

Transitive closure

A transitive closure of a graph $G = (N, A)$ is a matrix $\Gamma = \gamma_{ii}$ defined as follows

 $\gamma_{ij} =$ $\int 1$, if graph G contains a directed path form node *i* to node *j* 0, otherwise.

How to find transitive closure of a graph in $O(mn)$ time?

- Run search algorithm starting from each node once
- Search algorithm runs in $O(m)$ time

Transitive closure

A transitive closure of a graph $G = (N, A)$ is a matrix $\Gamma = \gamma_{ii}$ defined as follows

 $\gamma_{ij} =$ $\int 1$, if graph G contains a directed path form node *i* to node *j* 0, otherwise.

How to find transitive closure of a graph in $O(mn)$ time?

- Run search algorithm starting from each node once
- Search algorithm runs in $O(m)$ time

How to find strongly connected components given the transitive closure?

Transitive closure

A transitive closure of a graph $G = (N, A)$ is a matrix $\Gamma = \gamma_{ii}$ defined as follows

 $\gamma_{ij} =$ $\int 1$, if graph G contains a directed path form node *i* to node *j* 0, otherwise.

How to find transitive closure of a graph in $O(mn)$ time?

- Run search algorithm starting from each node once
- Search algorithm runs in $O(m)$ time

How to find strongly connected components given the transitive closure?

Algorithm Finding SCCs

```
1: Unlabel all nodes, next← 1
```
- 2: while There are unlabeled nodes do
- 3: Select an unlabeled node i, label(i) \leftarrow next
- 4: for $i = 1 : n$ do

```
5: if \gamma_{ii} = 1 and \gamma_{ii} = 1 then
```
- 6: label $(j) \leftarrow$ next
- 7: end if
- 8: end for

```
9: next \leftarrow next + 1
```
10: end while

Topological ordering

Label nodes of a network $G = (N, A)$ by distinct numbers from 1 to n

- Let order (i) be the label of node i
- The labeling is a topological ordering of nodes if for every arc $(i, j) \in A$, we have order $(i) <$ order (j)

(a) Topologically ordered (b) Topologically ordered (c) Not topol. ordered

- A network might have several topological orderings
- Some networks cannot be topologically ordered

Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

```
1: indegree(i) \leftarrow 0 for all i \in N2: for (i, j) \in A do
 3: indegree(j) \leftarrow indegree(j) + 1
 4: end for
 5: LIST← ∅, next← 0
 6: for i \in N do
 7: if indegree(i) = 0 then
 8: LIST← LIST ∪ \{i\}9: end if
10: end for
11: while LIST\neq \emptyset do
12: Select a node i from LIST and delete it
13: next←next+1, order(i)←next
14: for (i, j) \in A do
15: indegree(j) \leftarrow indegree(j) – 1
16: if indegree(i) = 0 then
17: LIST← LIST ∪ \{i\}18: end if
19: end for
20: end while
```
21: The network is acyclic if and only if next= n and order is a topological ordering

Repeatedly find nodes with zero indegree, delete nodes and arcs

Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

```
1: indegree(i) \leftarrow 0 for all i \in N2: for (i, j) \in A do
 3: indegree(j) \leftarrow indegree(j) + 1
 4: end for
 5: LIST← ∅, next← 0
 6: for i \in N do
 7: if indegree(i) = 0 then
 8: LIST← LIST ∪ \{i\}9: end if
10: end for
11: while LIST\neq \emptyset do
12: Select a node i from LIST and delete it
13: next←next+1, order(i)←next
14: for (i, j) \in A do
15: indegree(j) \leftarrow indegree(j) – 1
16: if indegree(i) = 0 then
17: LIST← LIST ∪ \{i\}18: end if
19: end for
20: end while
```
21: The network is acyclic if and only if next= n and order is a topological ordering

Can also be done using DFS

Trees are bipartite

Why title?

• How to partition node set N of a tree $G = (N, A)$ into N_1 and N_2 ?

Spanning trees

- A spanning subgraph $G' = (N', A')$ of $G = \{N, A\}$ \mathbf{D} $N'=N$
	- $2 \land \land \subset A$
- A tree $\mathcal{T}=(N,A')$ is a spanning tree of $G=(N,A)$ if $\mathcal T$ is a spanning subgraph
	- $\mathbf 1$ The set of arcs A' are tree arcs
	- $\overline{\mathbf{2}}$ The set of arcs $A\setminus A'$ are nontree arcs

Spanning trees are bipartite graphs!

Spanning trees and bipartite graphs

Given an arbitrary spanning tree $T = (N, A')$ of a graph $G = (N, A)$. A graph G is bipartite if and only if for every nontree arc $(k,\ell) \in A \setminus A'$, the distance between node k and node ℓ in T is odd.

- \bullet Start from any node s, run BFS to obtain search tree T
- **2** For nontree arc (k, l) , check parity of distance between k and l in T

Finding an Eulerian circuit: procedure

- Whether a graph has an Eulerian circuit can be checked in $O(m)$
	- **1** Check connectivity
	- **2** Check degrees
- When there is an Eulerian circuit:

Algorithm Finding an Eulerian circuit

- 1: STACK← \emptyset . LIST← \emptyset
- 2: Select an arbitrary node s
- 3: $STACK.add(s)$
- 4: while STACK $\neq \emptyset$ do
- 5: $i \leftarrow$ STACK.top()
- 6: if i has zero degrees then
- 7: $LIST \leftarrow [LIST, i]$
- 8: STACK.pop()
- 9: else
- 10: Select an edge $(i, j) \in A$
- 11: $A \leftarrow A \setminus \{(i,j)\}$
- 12: $STACK.add(j)$
- $13[°]$ end if
- 14: end while

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
	- basics of graph theory
	- algorithm complexity and data structure
	- graph search algorithm (this lecture)
- Shortest path problems (next lecture)
- Maximum flow problems (5 lectures)
- Minimum cost flow problems (3 lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)