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Last time

Complexity analysis

Complexity measures
Asymptotic notation

Data structure

Why data structure?
Stacks and queues
d-heaps
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Today

1 General search algorithms
Forward search
Reverse search

2 Particular search algorithms
Breadth-first search
Depth-first search

3 Applications
Strong connectivity
Topological ordering
Determining bipartite graphs
Finding Eulerian circuits in undirected graphs
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What are search algorithms?

Search algorithms are techniques to find nodes with special properties

1 Find all nodes that are reachable by directed paths from a specific node
2 Find all the nodes that can reach a specific node along directed paths

They can also be utilized (as subroutines) to certify graph properties

1 Check connectivity and find strongly connected components
2 Identify a directed cycle, if no exists, find a topological ordering
3 Determining whether a given network is bipartite

Some search algorithms find certain objects in graphs

1 Find Eulerian circuits
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Search algorithms: nodes reachable from a source

A typical search process

1 Start from an initial node

2 Explore the neighboring nodes through directed edges

3 Explore the neighbors of neighbors and so on

4 Stop when all nodes are explored or a node of interest is found

Some details

How to know if nodes are explored or not
Designate all the nodes as being in one of the two states

1 marked: explored
2 unmarked: yet to be explored

Mark an unmarked node j if j is explored from marked i

Predecessor relationship: when j is marked from i , set pred(j) = i

Traversal order: record the order the marked nodes are traversed
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Search algorithms: nodes reachable from a source

Algorithm Search

1: Unmark all nodes in N
2: Mark source node s
3: pred(s)← 0
4: next← 1
5: order(s)← 1
6: LIST← {s}
7: while LIST̸= ∅ do
8: Select a node i from LIST
9: if node i is incident to an admissible arc (i , j) then

10: Mark node j
11: pred(j)← i
12: next←next+1
13: order(j)←next
14: Add j to LIST
15: else
16: Delete node i from LIST
17: end if
18: end while

Admissible arc (i , j): node i is marked, and node j is not
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A search example
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(a) A directed graph
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(b) Search process

1 Mark node 1 (source)
2 pred(1)← 0
3 next← 1
4 order(1)← 1

5 yeah
6 yeah
7 yeah

LIST={1}
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has an admissible arc (1, 2)
3 Mark node 2
4 pred(2)← 1
5 next← 2
6 order(2)← next
7 Add 2 to LIST
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 5)
3 Mark node 5
4 pred(5)← 2
5 next← 3
6 order(5)← next
7 Add 5 to LIST

LIST={1, 2, 5}
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has an admissible arc (1, 3)
3 Mark node 3
4 pred(3)← 1
5 next← 4
6 order(3)← next
7 Add 3 to LIST

LIST={1, 2, 3, 5}
Search algorithms (Lecture 4) AU4606/AI4702 September 21, 2023 6 / 23



A search example

1source

2

3 4

5

6

(a) A directed graph

11

2

2

3

4

4

5

5

3

6

(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 4)
3 Mark node 4
4 pred(4)← 2
5 next← 5
6 order(4)← next
7 Add 4 to LIST

LIST={1, 2, 3, 4, 5}
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has no admissible arcs
3 Delete node 1 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={2, 3, 4, 5}
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(b) Search process

1 Pick node 3 from LIST
2 Node 3 has no admissible arcs
3 Delete node 3 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={2, 4, 5}
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(b) Search process

1 Pick node 5 from LIST
2 Node 5 has an admissible arc (5, 6)
3 Mark node 6
4 pred(6)← 5
5 next← 6
6 order(6)← next
7 Add 6 to LIST

LIST={2, 4, 5, 6}
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(b) Search process

1 Pick node 4 from LIST
2 Node 4 has no admissible arcs
3 Delete node 4 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={2, 5, 6}
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(b) Search process

1 Pick node 6 from LIST
2 Node 6 has no admissible arcs
3 Delete node 6 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={2, 5}
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has no admissible arcs
3 Delete node 2 from LIST
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A search example
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(b) Search process

1 Pick node 5 from LIST

2 Node 5 has no admissible arcs

3 Delete node 5 from LIST

4 yeah

5 yeah

6 yeah

7 yeah

LIST=∅
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Forward search: comments

Search tree

The tree defined by the predecessor indices consisting of marked
nodes (why is it a tree?)

Correctness

1 Soundness: all marked nodes are reachable

2 Completeness: all reachable nodes are marked

Time complexity

The search algorithm runs in O(m + n) times, in iteration, either

1 Find an admissible arc and mark a node, O(m)
2 Does not find an admissible arc and delete a node, O(n)

How to select a node from LIST is not specified!

Implementation using queues: breadth-first search

Implementation using stacks: depth-first search
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Reverse search

How do we search for the set of nodes that can reach a destination node t?

1 Initialize LIST as LIST = {t}
2 When examining a node, scan the incoming arcs

3 Designate arc (i , j) as admissible if i is unmarked and j is marked

Forward search vs reverse search

Forward search creates a directed out-tree rooted at source s

Reverse search creates a directed in-tree rooted at destination t
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Today

1 General search algorithms
Forward search
Reverse search

2 Particular search algorithms
Breadth-first search
Depth-first search

3 Applications
Strong connectivity
Topological ordering
Determining bipartite graphs
Finding Eulerian circuits in undirected graphs



Breadth-first search: procedure

Algorithm Search

1: Unmark all nodes in N
2: Mark source node s
3: pred(s)← 0
4: next← 1
5: order(s)← 1
6: LIST← {s}
7: while LIST̸= ∅ do
8: Select a node i from LIST in a first-in-first-out manner
9: if node i is incident to an admissible arc (i , j) then

10: Mark node j
11: pred(j)← i
12: next←next+1
13: order(j)←next
14: Add j to LIST
15: else
16: Delete node i from LIST
17: end if
18: end while

If LIST is maintained as a queue (FIFO), we get breadth-first search

Explore all neighbors, then all neighbors of neighbors and so on
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BFS: an example
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(a) A directed graph
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(b) Search process

1 Mark node 1 (source)
2 pred(1)← 0
3 next← 1
4 order(1)← 1

5 yeah
6 yeah
7 yeah

LIST={1}
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has an admissible arc (1, 2)
3 Mark node 2
4 pred(2)← 1
5 next← 2
6 order(2)← next
7 Add 2 to LIST

LIST={1, 2}
Search algorithms (Lecture 4) AU4606/AI4702 September 21, 2023 10 / 23



BFS: an example

1source

2

3 4

5

6

(a) A directed graph
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has an admissible arc (1, 3)
3 Mark node 3
4 pred(3)← 1
5 next← 3
6 order(3)← next
7 Add 3 to LIST

LIST={1, 2, 3}
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has no admissible arcs
3 Delete node 1 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={2, 3}
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BFS: an example
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(a) A directed graph
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 4)
3 Mark node 4
4 pred(4)← 2
5 next← 4
6 order(4)← next
7 Add 4 to LIST

LIST={2, 3, 4}
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BFS: an example
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(a) A directed graph
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 5)
3 Mark node 5
4 pred(5)← 2
5 next← 5
6 order(5)← next
7 Add 5 to LIST

LIST={2, 3, 4, 5}
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BFS: an example
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has no admissible arcs
3 Delete node 2 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={3, 4, 5}
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BFS: an example
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(b) Search process

1 Pick node 3 from LIST
2 Node 3 has no admissible arcs
3 Delete node 3 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={4, 5}
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(a) A directed graph
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(b) Search process

1 Pick node 4 from LIST
2 Node 4 has an admissible arc (4, 6)
3 Mark node 6
4 pred(6)← 4
5 next← 6
6 order(6)← next
7 Add 6 to LIST

LIST={4, 5, 6}
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(b) Search process

1 Pick node 4 from LIST
2 Node 4 has no admissible arcs
3 Delete node 4 from LIST
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7 yeah

LIST={5, 6}
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BFS: an example
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(a) A directed graph

11

2

2

3

3

4

4

5

5

6

6

(b) Search process

1 Pick node 5 from LIST
2 Node 5 has no admissible arcs
3 Delete node 5 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={6}
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(b) Search process

1 Pick node 6 from LIST

2 Node 6 has no admissible arcs

3 Delete node 6 from LIST

4 yeah

5 yeah

6 yeah

7 yeah

LIST=∅
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Breadth-first search: properties

Algorithm Search

1: Unmark all nodes in N
2: Mark source node s
3: pred(s)← 0
4: next← 1
5: order(s)← 1
6: LIST← {s}
7: while LIST̸= ∅ do
8: Select a node i from LIST in a first-in-first-out manner
9: if node i is incident to an admissible arc (i , j) then

10: Mark node j
11: pred(j)← i
12: next←next+1
13: order(j)←next
14: Add j to LIST
15: else
16: Delete node i from LIST
17: end if
18: end while

Properties of BFS

In a breadth-first search tree, the tree path from the source node s to any
node i is a shortest path (i.e., contains the fewest number of arcs among
all paths from s to i).
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Depth-first search: procedure

Algorithm Search

1: Unmark all nodes in N
2: Mark source node s
3: pred(s)← 0
4: next← 1
5: order(s)← 1
6: LIST← {s}
7: while LIST̸= ∅ do
8: Select a node i from LIST in a first-in-last-out manner
9: if node i is incident to an admissible arc (i , j) then

10: Mark node j
11: pred(j)← i
12: next←next+1
13: order(j)←next
14: Add j to LIST
15: else
16: Delete node i from LIST
17: end if
18: end while

If LIST is maintained as a stack (FILO), we get depth-first search

Create a path as long as possible, until no new node can be marked
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DFS: an example
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(b) Search process

1 Mark node 1 (source)
2 pred(1)← 0
3 next← 1
4 order(1)← 1

5 yeah
6 yeah
7 yeah

LIST={1}
Search algorithms (Lecture 4) AU4606/AI4702 September 21, 2023 13 / 23



DFS: an example

1source

2

3 4

5

6
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(b) Search process

1 Pick node 1 from LIST
2 Node 1 has an admissible arc (1, 2)
3 Mark node 2
4 pred(2)← 1
5 next← 2
6 order(2)← next
7 Add 2 to LIST

LIST={1, 2}
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 3)
3 Mark node 3
4 pred(3)← 2
5 next← 3
6 order(3)← next
7 Add 3 to LIST

LIST={1, 2, 3}
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(a) A directed graph
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(b) Search process

1 Pick node 3 from LIST
2 Node 3 has an admissible arc (3, 4)
3 Mark node 4
4 pred(4)← 3
5 next← 4
6 order(4)← next
7 Add 4 to LIST

LIST={1, 2, 3, 4}
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(b) Search process

1 Pick node 4 from LIST
2 Node 4 has an admissible arc (4, 6)
3 Mark node 6
4 pred(6)← 4
5 next← 5
6 order(6)← next
7 Add 4 to LIST

LIST={1, 2, 3, 4, 6}
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(b) Search process

1 Pick node 6 from LIST
2 Node 6 has no admissible arcs
3 Delete node 6 from LIST

4 yeah
5 yeah
6 yeah
7 yeah

LIST={1, 2, 3, 4}
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1 Pick node 3 from LIST
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(b) Search process

1 Pick node 2 from LIST
2 Node 2 has an admissible arc (2, 5)
3 Mark node 5
4 pred(5)← 2
5 next← 5
6 order(5)← next
7 Add 5 to LIST

LIST={1, 2, 5}
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1 Pick node 2 from LIST
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(a) A directed graph
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(b) Search process

1 Pick node 1 from LIST

2 Node 1 has no admissible arcs

3 Delete node 1 from LIST

4 yeah

5 yeah

6 yeah

7 yeah

LIST=∅
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Depth-first search: properties

Algorithm Search

1: Unmark all nodes in N
2: Mark source node s
3: pred(s)← 0
4: next← 1
5: order(s)← 1
6: LIST← {s}
7: while LIST̸= ∅ do
8: Select a node i from LIST in a first-in-last-out manner
9: if node i is incident to an admissible arc (i , j) then

10: Mark node j
11: pred(j)← i
12: next←next+1
13: order(j)←next
14: Add j to LIST
15: else
16: Delete node i from LIST
17: end if
18: end while

Properties of DFS

1 If node j is a descendant of node i and j ̸= i , then order(j) > order(i)

2 All the descendants of any node are ordered consecutively in sequence
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Today

1 General search algorithms
Forward search
Reverse search

2 Particular search algorithms
Breadth-first search
Depth-first search

3 Applications
Strong connectivity
Topological ordering
Determining bipartite graphs
Finding Eulerian circuits in undirected graphs



Determining strong connectivity

Start from an arbitrary node s in G = (N,A)

A forward search finds set of nodes U reachable from s

A reverse search finds set of nodes V that can reach s

Is it enough? YES!

Determining strong connectivity

A graph G = (N,A) is strongly connected if and only if U = V = N.
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Determining strongly connected components
Transitive closure

A transitive closure of a graph G = (N,A) is a matrix Γ = γij defined as
follows

γij =

{
1, if graph G contains a directed path form node i to node j

0, otherwise.

How to find transitive closure of a graph in O(mn) time?

Run search algorithm starting from each node once
Search algorithm runs in O(m) time

How to find strongly connected components given the transitive closure?
Algorithm Finding SCCs

1: Unlabel all nodes, next← 1
2: while There are unlabeled nodes do
3: Select an unlabeled node i , label(i)← next
4: for j = 1 : n do
5: if γij = 1 and γji = 1 then
6: label(j)← next
7: end if
8: end for
9: next← next + 1

10: end while
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Topological ordering

Label nodes of a network G = (N,A) by distinct numbers from 1 to n

Let order(i) be the label of node i

The labeling is a topological ordering of nodes if for every arc
(i , j) ∈ A, we have order(i) < order(j)
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2

2

1

3

5

4

4

5

3

(a) Topologically ordered

1

3

2

1

3

5

4

4

5

2

(b) Topologically ordered

1

2

2

1

3

5
4

3

5

4

(c) Not topol. ordered

A network might have several topological orderings

Some networks cannot be topologically ordered
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Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

1: indegree(i)← 0 for all i ∈ N
2: for (i , j) ∈ A do
3: indegree(j)← indegree(j) + 1
4: end for
5: LIST← ∅, next← 0
6: for i ∈ N do
7: if indegree(i) = 0 then
8: LIST← LIST ∪ {i}
9: end if

10: end for
11: while LIST̸= ∅ do
12: Select a node i from LIST and delete it
13: next←next+1, order(i)←next
14: for (i , j) ∈ A do
15: indegree(j)← indegree(j)− 1
16: if indegree(j) = 0 then
17: LIST← LIST ∪ {j}
18: end if
19: end for
20: end while
21: The network is acyclic if and only if next= n and order is a topological ordering

Repeatedly find nodes with zero indegree, delete nodes and arcs
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Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

1: indegree(i)← 0 for all i ∈ N
2: for (i , j) ∈ A do
3: indegree(j)← indegree(j) + 1
4: end for
5: LIST← ∅, next← 0
6: for i ∈ N do
7: if indegree(i) = 0 then
8: LIST← LIST ∪ {i}
9: end if

10: end for
11: while LIST̸= ∅ do
12: Select a node i from LIST and delete it
13: next←next+1, order(i)←next
14: for (i , j) ∈ A do
15: indegree(j)← indegree(j)− 1
16: if indegree(j) = 0 then
17: LIST← LIST ∪ {j}
18: end if
19: end for
20: end while
21: The network is acyclic if and only if next= n and order is a topological ordering

Can also be done using DFS
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Trees are bipartite

Why title?

How to partition node set N of a tree G = (N,A) into N1 and N2?

Spanning trees

A spanning subgraph G ′ = (N ′,A′) of G = {N,A}
1 N ′ = N
2 A′ ⊂ A

A tree T = (N,A′) is a spanning tree of G = (N,A) if T is a
spanning subgraph

1 The set of arcs A′ are tree arcs
2 The set of arcs A \ A′ are nontree arcs

Spanning trees are bipartite graphs!

Spanning trees and bipartite graphs

Given an arbitrary spanning tree T = (N,A′) of a graph G = (N,A). A
graph G is bipartite if and only if for every nontree arc (k , ℓ) ∈ A \ A′, the
distance between node k and node ℓ in T is odd.
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Determining bipartite graphs

1 Start from any node s, run BFS to obtain search tree T

2 For nontree arc (k , ℓ), check parity of distance between k and ℓ in T

Search algorithms (Lecture 4) AU4606/AI4702 September 21, 2023 21 / 23



Finding an Eulerian circuit: procedure

Whether a graph has an Eulerian circuit can be checked in O(m)
1 Check connectivity
2 Check degrees

When there is an Eulerian circuit:

Algorithm Finding an Eulerian circuit

1: STACK← ∅, LIST← ∅
2: Select an arbitrary node s
3: STACK.add(s)
4: while STACK ̸= ∅ do
5: i ← STACK.top()
6: if i has zero degrees then
7: LIST← [LIST, i ]
8: STACK.pop()
9: else

10: Select an edge (i , j) ∈ A
11: A← A \ {(i , j)}
12: STACK.add(j)
13: end if
14: end while
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Upcoming

Week 1-8 (AU4606 & AI4702):

Introduction (1 lecture)

Preparations (3 lectures)

basics of graph theory
algorithm complexity and data structure
graph search algorithm (this lecture)

Shortest path problems (next lecture)

Maximum flow problems (5 lectures)

Minimum cost flow problems (3 lectures)

Introduction to multi-agent systems (1 lecture)

Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

Simplex and network simplex methods (2 lectures)

Global minimum cut problems (3 lectures)

Minimum spanning tree problems (3 lectures)
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