Graph Search Algorithms

AU4606: Network Optimization

Al4702: Network Intelligence and Optimization

Xiaoming Duan
Department of Automation
Shanghai Jiao Tong University

September 21, 2023

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 1/23

o Complexity analysis
o Complexity measures
e Asymptotic notation
o Data structure

e Why data structure?
o Stacks and queues
e d-heaps

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 2/23

@ General search algorithms
@ Forward search
@ Reverse search

© Particular search algorithms
@ Breadth-first search
@ Depth-first search

e Applications
@ Strong connectivity
@ Topological ordering
@ Determining bipartite graphs
@ Finding Eulerian circuits in undirected graphs

@ General search algorithms
@ Forward search
@ Reverse search

What are search algorithms?

@ Search algorithms are techniques to find nodes with special properties
@ Find all nodes that are reachable by directed paths from a specific node
@® Find all the nodes that can reach a specific node along directed paths

@ They can also be utilized (as subroutines) to certify graph properties

@ Check connectivity and find strongly connected components
@ Identify a directed cycle, if no exists, find a topological ordering
© Determining whether a given network is bipartite

@ Some search algorithms find certain objects in graphs
@ Find Eulerian circuits

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 3/23

Search algorithms: nodes reachable from a source

A typical search process
@ Start from an initial node
® Explore the neighboring nodes through directed edges
® Explore the neighbors of neighbors and so on

@ Stop when all nodes are explored or a node of interest is found

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 4/23

Search algorithms: nodes reachable from a source

A typical search process
@ Start from an initial node
® Explore the neighboring nodes through directed edges
® Explore the neighbors of neighbors and so on

@ Stop when all nodes are explored or a node of interest is found

Some details

@ How to know if nodes are explored or not
o Designate all the nodes as being in one of the two states

@ marked: explored
@ unmarked: yet to be explored

e Mark an unmarked node j if j is explored from marked i
@ Predecessor relationship: when j is marked from i, set pred(j) = i

@ Traversal order: record the order the marked nodes are traversed

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 4/23

Search algorithms: nodes reachable from a source

Algorithm Search

1: Unmark all nodes in N

2: Mark source node s

3: pred(s) < 0

4: next+ 1

5: order(s)« 1

6: LIST+ {s}

7: while LIST# 0 do

8 Select a node i from LIST
9: if node i is incident to an admissible arc (/,;) then
10: Mark node j

11 pred(j) < i

12: next<—next+1

13: order(j)<—next

14: Add j to LIST

15 else

16: Delete node i from LIST
17: end if

18: end while

Admissible arc (7,/): node i is marked, and node j is not
Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 5/23

A search example

source @ 1 . @

%@/ ® ®

(a) A directed graph (b) Search process

@ Mark node 1 (source)
® pred(1) <0

© next+— 1

O order(1) « 1

LIST={1}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source @ 1 @

%@/ o ®

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has an admissible arc (1, 2)
©® Mark node 2
O pred(2) « 1
@ next+ 2
O order(2) + next
@ Add 2 to LIST
LIST={1,2}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source @ 1 @

%@/ o ®

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 5)
©® Mark node 5
O pred(5) + 2
@ next+ 3
O order(5) « next
@ Add 5 to LIST
LIST={1,2,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source @ 1 @

@%@/ ® o

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has an admissible arc (1, 3)
©® Mark node 3
O pred(3) « 1
@ next+— 4
O order(3) « next
@ Add 3 to LIST
LIST={1,2,3,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

2 3

@1
LW e e

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 4)
©® Mark node 4
O pred(4) « 2
@ next+ 5
O order(4) + next
@ Add 4 to LIST
LIST={1,2,3,4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

©

source

A search example

2 3

@1
LW e e

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has no admissible arcs
©® Delete node 1 from LIST

©

source

LIST={2,3,4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

2 3

@1
LW e e

(a) A directed graph (b) Search process

© Pick node 3 from LIST
® Node 3 has no admissible arcs
©® Delete node 3 from LIST

©

source

LIST={2,4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source

(a) A directed graph (b) Search process

© Pick node 5 from LIST
® Node 5 has an admissible arc (5, 6)
©® Mark node 6
O pred(6) < 5
@ next+ 6
O order(6) + next
@ Add 6 to LIST
LIST={2,4,5,6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source

(a) A directed graph (b) Search process

© Pick node 4 from LIST
® Node 4 has no admissible arcs
© Delete node 4 from LIST

LIST={2,5,6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source

(a) A directed graph (b) Search process

© Pick node 6 from LIST
® Node 6 has no admissible arcs
©® Delete node 6 from LIST

LIST={2,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

source

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has no admissible arcs
©® Delete node 2 from LIST

LIST={5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

A search example

0 1< \ ®
o OO

(a) A directed graph (b) Search process

@ Pick node 5 from LIST
® Node 5 has no admissible arcs
©® Delete node 5 from LIST

LIST=0

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 6 /23

Forward search: comments

Search tree

@ The tree defined by the predecessor indices consisting of marked
nodes (why is it a tree?)

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 7/23

Forward search: comments

Search tree

@ The tree defined by the predecessor indices consisting of marked
nodes (why is it a tree?)

Correctness
@ Soundness: all marked nodes are reachable

® Completeness: all reachable nodes are marked

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 7/23

Forward search: comments

Search tree

@ The tree defined by the predecessor indices consisting of marked
nodes (why is it a tree?)

Correctness
@ Soundness: all marked nodes are reachable

® Completeness: all reachable nodes are marked

Time complexity
@ The search algorithm runs in O(m + n) times, in iteration, either

@ Find an admissible arc and mark a node, O(m)
@ Does not find an admissible arc and delete a node, O(n)

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 7/23

Forward search: comments

Search tree

@ The tree defined by the predecessor indices consisting of marked
nodes (why is it a tree?)

Correctness
@ Soundness: all marked nodes are reachable

® Completeness: all reachable nodes are marked

Time complexity
@ The search algorithm runs in O(m + n) times, in iteration, either

@ Find an admissible arc and mark a node, O(m)
@ Does not find an admissible arc and delete a node, O(n)

How to select a node from LIST is not specified!
@ Implementation using queues: breadth-first search

@ Implementation using stacks: depth-first search

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 7/23

Reverse search

How do we search for the set of nodes that can reach a destination node t?

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 8/23

Reverse search

How do we search for the set of nodes that can reach a destination node t?
@ Initialize LIST as LIST = {t}
® When examining a node, scan the incoming arcs

© Designate arc (/,) as admissible if / is unmarked and j is marked

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 8/23

Reverse search

How do we search for the set of nodes that can reach a destination node t?
@ Initialize LIST as LIST = {t}
® When examining a node, scan the incoming arcs

© Designate arc (/,) as admissible if / is unmarked and j is marked

Forward search vs reverse search
@ Forward search creates a directed out-tree rooted at source s

@ Reverse search creates a directed in-tree rooted at destination t

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 8/23

© Particular search algorithms
@ Breadth-first search
@ Depth-first search

Breadth-first search: procedure

Algorithm Search

1: Unmark all nodes in N

2: Mark source node s

3: pred(s) « 0

4: next« 1

5: order(s)+ 1

6: LIST«+ {s}

7: while LIST# () do

8 Select a node i from LIST in a first-in-first-out manner
9: if node i is incident to an admissible arc (i, /) then
10: Mark node j

11: pred(j) < i

12: next<—next+1

13: order(j)<—next

14: Add j to LIST

15: else

16: Delete node i from LIST

17: end if

18: end while

o If LIST is maintained as a queue (FIFO), we get breadth-first search

@ Explore all neighbors, then all neighbors of neighbors and so on

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 9/23

BFS: an example

source @ 1 . @

%@/ ® ®

(a) A directed graph (b) Search process

@ Mark node 1 (source)
® pred(1) <0

© next+— 1

O order(1) « 1

LIST={1}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

source @ 1 @

%@/ o ®

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has an admissible arc (1, 2)
©® Mark node 2
O pred(2) « 1
@ next+ 2
O order(2) + next
@ Add 2 to LIST
LIST={1,2}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

source @ 1 @

@%@/ ® o

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has an admissible arc (1, 3)
©® Mark node 3
O pred(3) « 1
@ next+ 3
O order(3) « next
@ Add 3 to LIST
LIST={1,2,3}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

source @ 1 @

@%@/ ® o

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has no admissible arcs
©® Delete node 1 from LIST

LIST={2,3}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

©

@1
@%@/ ® ®

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 4)
©® Mark node 4
O pred(4) « 2
@ next+— 4
O order(4) + next
@ Add 4 to LIST
LIST={2,3,4}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

©

source

BFS: an example

2 5

@1
@%@/ ® ®

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 5)
©® Mark node 5
O pred(5) + 2
@ next+ 5
O order(5) « next
@ Add 5 to LIST
LIST={2,3,4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

©

source

BFS: an example

2 5

@1
@%@/ ® ®

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has no admissible arcs
©® Delete node 2 from LIST

©

source

LIST={3,4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

2 5

@1
@%@/ ® ®

(a) A directed graph (b) Search process

© Pick node 3 from LIST
® Node 3 has no admissible arcs
©® Delete node 3 from LIST

©

source

LIST={4,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

.<§ -

(a) A directed graph) Search process

© Pick node 4 from LIST
® Node 4 has an admissible arc (4, 6)
©® Mark node 6
O pred(6) < 4
@ next+ 6
O order(6) + next
@ Add 6 to LIST
LIST={4,5,6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

®
Ok < ®
o ©) /

(a) A directed graph (b) Search process

© Pick node 4 from LIST
® Node 4 has no admissible arcs
© Delete node 4 from LIST

LIST={5,6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

®
Ok < ®
@%@/ @ /

(a) A directed graph (b) Search process

© Pick node 5 from LIST
@® Node 5 has no admissible arcs
©® Delete node 5 from LIST

LIST={6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

BFS: an example

)
OF < ®
(0 o &

(a) A directed graph (b) Search process

@ Pick node 6 from LIST
® Node 6 has no admissible arcs
©® Delete node 6 from LIST

LIST=0

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 10 / 23

Breadth-first search: properties

Algorithm Search

1: Unmark all nodes in N

2: Mark source node s

3: pred(s) < 0

4: next+ 1

5: order(s)+ 1

6: LIST«+ {s}

7: while LIST#) do

8 Select a node i from LIST in a first-in-first-out manner
9: if node i is incident to an admissible arc (i, /) then
10: Mark node j

11: pred(j) < i

12: next«—next+1

13: order(j)<—next

14: Add j to LIST

15: else

16: Delete node i from LIST

17. end if

18: end while

Properties of BFS

In a breadth-first search tree, the tree path from the source node s to any
node i is a shortest path (i.e., contains the fewest number of arcs among
all paths from s to /).

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 11 /23

Depth-first search: procedure

Algorithm Search

1:
2:
3:
4:
5:
6:
7:
8
9

10:
11:
12:

18:

Unmark all nodes in N
Mark source node s
pred(s) < 0
next« 1
order(s)< 1
LIST«+ {s}
while LIST# () do
Select a node i from LIST in a first-in-last-out manner
if node / is incident to an admissible arc (/,/) then
Mark node j
pred(j) < i
next<—next+1
order(j)<—next
Add j to LIST
else
Delete node i from LIST
end if
end while

o If LIST is maintained as a stack (FILO), we get depth-first search

o Create a path as long as possible, until no new node can be marked

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 12 /23

DFS: an example

source @ 1 . @

%@/ ® ®

(a) A directed graph (b) Search process

@ Mark node 1 (source)
® pred(1) <0

© next+— 1

O order(1) « 1

LIST={1}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source @ 1 @

%@/ o ®

(a) A directed graph (b) Search process

© Pick node 1 from LIST
® Node 1 has an admissible arc (1, 2)
©® Mark node 2
O pred(2) « 1
@ next+ 2
O order(2) + next
@ Add 2 to LIST
LIST={1,2}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source @ 1 @

%@/ @ O

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 3)
©® Mark node 3
O pred(3) « 2
@ next+ 3
O order(3) « next
@ Add 3 to LIST
LIST={1,2,3}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

@ !
% P

(a) A directed graph) Search process

© Pick node 3 from LIST
® Node 3 has an admissible arc (3, 4)
©® Mark node 4
O pred(4) < 3
@ next+— 4
O order(4) + next
@ Add 4 to LIST
LIST={1,2,3,4}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 4 from LIST
® Node 4 has an admissible arc (4, 6)
©® Mark node 6
O pred(6) < 4
@ next+ 5
O order(6) + next
@ Add 4 to LIST
LIST={1,2,3,4,6}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 6 from LIST
® Node 6 has no admissible arcs
©® Delete node 6 from LIST

LIST={1,2,3,4}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 4 from LIST
® Node 4 has no admissible arcs
© Delete node 4 from LIST

LIST={1,2,3}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 3 from LIST
® Node 3 has no admissible arcs
©® Delete node 3 from LIST

LIST={1,2}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has an admissible arc (2, 5)
©® Mark node 5
O pred(5) + 2
@ next+ 5
O order(5) « next
@ Add 5 to LIST
LIST={1,2,5}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 5 from LIST
@® Node 5 has no admissible arcs
©® Delete node 5 from LIST

LIST={1,2}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

© Pick node 2 from LIST
® Node 2 has no admissible arcs
©® Delete node 2 from LIST

LIST={1}

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

DFS: an example

source

@ 1

(a) A directed graph (b) Search process

@ Pick node 1 from LIST
® Node 1 has no admissible arcs
© Delete node 1 from LIST

LIST=0

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 13 /23

Depth-first search: properties

Algorithm Search

1: Unmark all nodes in N

2: Mark source node s

3: pred(s) « 0

4: next 1

5: order(s)+ 1

6: LIST«+ {s}

7: while LIST# 0 do

8 Select a node 7 from LIST in a first-in-last-out manner
9: if node i is incident to an admissible arc (i, /) then
10: Mark node j

11: pred(j) < i

12: next<—next+1

13: order(j)+—next

14: Add j to LIST

15: else

16: Delete node i from LIST

17. end if

18: end while

Properties of DFS

@ If node j is a descendant of node i and j # i, then order(j) > order(/)

® All the descendants of any node are ordered consecutively in sequence

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 14 / 23

© Applications
@ Strong connectivity
@ Topological ordering
@ Determining bipartite graphs
@ Finding Eulerian circuits in undirected graphs

Determining strong connectivity

Start from an arbitrary node s in G = (N, A)
@ A forward search finds set of nodes U reachable from s

@ A reverse search finds set of nodes V that can reach s

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 15 / 23

Determining strong connectivity

Start from an arbitrary node s in G = (N, A)
@ A forward search finds set of nodes U reachable from s

@ A reverse search finds set of nodes V that can reach s

Is it enough?

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 15 / 23

Determining strong connectivity

Start from an arbitrary node s in G = (N, A)
@ A forward search finds set of nodes U reachable from s

@ A reverse search finds set of nodes V that can reach s

Is it enough? YES!

Determining strong connectivity

A graph G = (N, A) is strongly connected if and only if U=V = N.

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 15 / 23

Determining strongly connected components

Transitive closure

A transitive closure of a graph G = (N, A) is a matrix [= ~;; defined as
follows

0, otherwise.

{1, if graph G contains a directed path form node i to node j
VYij =

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 16 / 23

Determining strongly connected components

Transitive closure

A transitive closure of a graph G = (N, A) is a matrix [= ~;; defined as
follows

0, otherwise.

{1, if graph G contains a directed path form node i to node j
VYij =

How to find transitive closure of a graph in O(mn) time?

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 16 / 23

Determining strongly connected components

Transitive closure

A transitive closure of a graph G = (N, A) is a matrix [= ~;; defined as
follows

0, otherwise.

{1, if graph G contains a directed path form node i to node j
VYij =

How to find transitive closure of a graph in O(mn) time?
@ Run search algorithm starting from each node once
@ Search algorithm runs in O(m) time

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 16 / 23

Determining strongly connected components

Transitive closure

A transitive closure of a graph G = (N, A) is a matrix [= ~;; defined as
follows

0, otherwise.

{1, if graph G contains a directed path form node i to node j
VYij =

How to find transitive closure of a graph in O(mn) time?
@ Run search algorithm starting from each node once
@ Search algorithm runs in O(m) time
How to find strongly connected components given the transitive closure?

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 16 / 23

ngly connected components

Transitive closure

A transitive closure of a graph G = (N, A) is a matrix [= ~;; defined as
follows

)1, if graph G contains a directed path form node i to node j
5= 0, otherwise.

How to find transitive closure of a graph in O(mn) time?
@ Run search algorithm starting from each node once
@ Search algorithm runs in O(m) time
How to find strongly connected components given the transitive closure?

Algorithm Finding SCCs

1: Unlabel all nodes, next«+ 1

2: while There are unlabeled nodes do

3: Select an unlabeled node /, label(/) < next

4 forj=1:ndo

5 if 7; =1 and v;; = 1 then
6: label(j) < next

7 end if

8 end for

9: next <— next 4 1
10: end while

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 16 / 23

Topological ordering

Label nodes of a network G = (N, A) by distinct numbers from 1 to n
o Let order(i) be the label of node i
@ The labeling is a topological ordering of nodes if for every arc
(i,j) € A, we have order(i) < order(j)

e [N e [N\ e
=7 o= o
(c) Not topol. ordered

(a) Topologically ordered (b) Topologically ordered

@ A network might have several topological orderings
@ Some networks cannot be topologically ordered

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 17 /23

Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

1: indegree(i) < 0 for all i € N

2: for (i,j) € Ado

3: indegree(j) < indegree(j) + 1

4: end for

5: LIST+ (), next«< 0

6: for i € N do

7: if indegree(i) = 0 then

8: LIST+ LIST U {i}

9: endif

10: end for

11: while LIST# 0 do

12: Select a node i from LIST and delete it
13: next<—next+1, order(i)<next
14: for (i,j) € Ado

15: indegree(j) < indegree(j) — 1
16: if indegree(j) = 0 then

17: LIST«+ LIST U {j}

18: end if

19: end for
20: end while

21: The network is acyclic if and only if next= n and order is a topological ordering

Repeatedly find nodes with zero indegree, delete nodes and arcs

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 18 / 23

Topological ordering

Topological ordering

A network is acyclic if and only if it possesses a topological ordering.

Algorithm Topological ordering

1: indegree(i) < 0 for all i € N

2: for (i,j) € Ado

3: indegree(j) < indegree(j) + 1
4: end for

5: LIST+ (), next«< 0

6: for i € N do

7: if indegree(i) = 0 then

8: LIST+ LIST U {i}

9: endif

10: end for

11: while LIST# 0 do

12: Select a node i from LIST and delete it
13: next<—next+1, order(i)<next
14: for (i,j) € Ado

15: indegree(j) < indegree(j) — 1
16: if indegree(j) = 0 then

17: LIST«+ LIST U {j}

18: end if

19: end for
20: end while

21: The network is acyclic if and only if next= n and order is a topological ordering

Can also be done using DFS

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 19 /23

Trees are bipartite

Why title?
@ How to partition node set N of a tree G = (N, A) into Ny and N,?

Spanning trees

@ A spanning subgraph G’ = (N, A") of G = {N, A}
O N=N
OACA

o Atree T = (N,A) is a spanning tree of G = (N, A) if T is a

spanning subgraph

@ The set of arcs A’ are tree arcs
@ The set of arcs A\ A’ are nontree arcs

Spanning trees are bipartite graphs!

Spanning trees and bipartite graphs

Given an arbitrary spanning tree T = (N, A") of a graph G = (N, A). A
graph G is bipartite if and only if for every nontree arc (k,¢) € A\ A, the
distance between node k and node ¢ in T is odd.

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 20 /23

Determining bipartite graphs

@ Start from any node s, run BFS to obtain search tree T
@® For nontree arc (k, ¢), check parity of distance between k and £ in T

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 21 /23

Finding an Eulerian circuit: procedure

@ Whether a graph has an Eulerian circuit can be checked in O(m)
@ Check connectivity
@ Check degrees

@ When there is an Eulerian circuit:

Algorithm Finding an Eulerian circuit

1: STACK«+ @, LIST«+ 0

2: Select an arbitrary node s
3: STACK.add(s)

4: while STACK # () do

5. i< STACK.top()

6: if i has zero degrees then
7: LIST « [LIST,]

8: STACK.pop()

9: else

10: Select an edge (i,j) € A
11: A+ A\{(i,))}

12: STACK.add())

13: end if

14: end while

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 22 /23

Week 1-8 (AU4606 & Al4702):

Introduction (1 lecture)

Preparations (3 lectures)

e basics of graph theory
e algorithm complexity and data structure
e graph search algorithm (this lecture)

Shortest path problems (next lecture)
Maximum flow problems (5 lectures)

Minimum cost flow problems (3 lectures)

Introduction to multi-agent systems (1 lecture)

Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):
@ Simplex and network simplex methods (2 lectures)
@ Global minimum cut problems (3 lectures)
@ Minimum spanning tree problems (3 lectures)

Search algorithms (Lecture 4) AU4606/A14702 September 21, 2023 23 /23

	General search algorithms
	Forward search
	Reverse search

	Particular search algorithms
	Breadth-first search
	Depth-first search

	Applications
	Strong connectivity
	Topological ordering
	Determining bipartite graphs
	Finding Eulerian circuits in undirected graphs

