Shortest Path Problems Il

AU4606: Network Optimization

Al4702: Network Intelligence and Optimization

Xiaoming Duan
Department of Automation
Shanghai Jiao Tong University

September 28, 2023

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 1/18

@ Shortest path problems: formulation

o What is a shortest path problem
e An “unusual” application

@ Algorithms for shortest path problems

e Two properties
o Algorithms for acyclic graphs (pulling and reaching)
e Dijkstra’s algorithm

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 2/18

@ Shortest path problems with negative weights
@ Issues with Dijkstra's algorithm
@ Optimality condition
@ Label-correcting algorithm
@ Bellman-Ford algorithm
@ All-pair shortest path problems

How does Dijkstra's algorithm fail?

(2)

source (1

© |Initialization: d(1) =0

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 3/18

How does Dijkstra's algorithm fail?

(2)

source (1

© |Initialization: d(1) =0
@® Pick node 1: d(2) =0, d(3) =99, d(4) =1

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 3/18

How does Dijkstra's algorithm fail?

(2)

source (1

© |Initialization: d(1) =0
@® Pick node 1: d(2) =0, d(3) =99, d(4) =1
® Pick node 2: none

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 3/18

How does Dijkstra's algorithm fail?

(2)

source (1

© |Initialization: d(1) =0

@® Pick node 1: d(2) =0, d(3) =99, d(4) =1
® Pick node 2: none

O Pick node 4: none

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 3/18

How does Dijkstra's algorithm fail?

(2)

source (1

© |Initialization: d(1) =0
@® Pick node 1: d(2) =0, d(3) =99, d(4) =1
® Pick node 2: none
O Pick node 4: none
O Pick node 3: d(4) = —201, terminate
Not able to find the shortest path 1 — 3 — 4 — 2 to node 2

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 3/18

Why does Dijkstra’s algorithm fail?

Correctness of Dikstra algorithm

Given a directed network G = (N, A) with nonnegative arc costs,
Dijkstra’s algorithm correctly determines the shortest path distances from
the source s to every node in the network.

@ We proved that when a node is selected, its distance label is optimal

@ Base case: distance label of source is optimal
@ Ind. hypothesis: distance labels of first k — 1 selected nodes are optimal
© Ind. step: by contradiction where nonnegativity of arc lengths is crucial

@ The optimality of distance labels of selected node is not guaranteed

New algorithms are needed.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 4/18

Do the two properties of shortest path problems still hold?

Subpaths are shortest

If the path s =/ —ip —--- — i, = k is a shortest path from node s to
node k, then for every g € {2,3,..., h — 1}, the subpath
S = —ip —--- — g is a shortest path from the source node to node i.

Distance labels

Let the vector d represent the shortest path distances. Then a directed
path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cjj for every arc (i,j) € P.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 5/18

Do the two properties of shortest path problems still hold?

Subpaths are shortest

If the path s =/ —ip —--- — i, = k is a shortest path from node s to
node k, then for every g € {2,3,..., h — 1}, the subpath
S = —ip —--- — g is a shortest path from the source node to node i.

Distance labels

Let the vector d represent the shortest path distances. Then a directed
path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cjj for every arc (i,j) € P.

These properties still hold so long as there are no negative cycles.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 5/18

Optimality condition

Distance labels

Let the vector d represent the shortest path distances. Then a directed
path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cj for every arc (i,j) € P.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 6 /18

Optimality condition

Distance labels

Let the vector d represent the shortest path distances. Then a directed
path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cj for every arc (i,j) € P.

Shortest path optimality condition

For each k € N, let d(k) be the length of some directed path from the
source to node k. Then the numbers d represents the shortest path
distances if and only if they satisfy the following shortest path optimality
conditions:

d(j) < d(i)+c; forall (i,j) € A.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 6 /18

Optimality condition

Distance labels

Let the vector d represent the shortest path distances. Then a directed
path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cj for every arc (i,j) € P.

Shortest path optimality condition

For each k € N, let d(k) be the length of some directed path from the
source to node k. Then the numbers d represents the shortest path
distances if and only if they satisfy the following shortest path optimality
conditions:

d(j) < d(i)+c; forall (i,j) € A.

These optimality conditions suggest a very natural algorithm.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 6 /18

Generic label-correcting algorithm

Algorithm Label-correcting

d(s) < 0 and pred(s) < 0

d(j) + oo for each node j € N\ {s}

while some arc (i,) satisfies d(j) > d(i) + ¢; do
d(j) « di) +
pred(j) < i

end while

S

@ “Label-setting” vs “label-correcting”

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 7/18

Label-correcting algorithm: running example

<&i<@
O 2

(5) O

o0 o0

(a) A directed graph (b) Label-correcting

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

@<\<\
1@ @—1’

&)

2 00
(a) A directed graph (b) Label-correcting

Arc (1, 3) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

< N <\
@—1’@ 1

(a) A directed graph (b) Label-correcting

2 (0. ¢]

Arc (1,2) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

6

< N <\
@—1’@ 1

GG

2 (0. ¢]

(a) A directed graph (b) Label-correcting

Arc (2,4) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

6

< N <\
@—1’@ 1 '

GO

2 9
(a) A directed graph (b) Label-correcting

Arc (4,5) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

6

@<\<\
2%@ 2@—1’@

2 5

(a) A directed graph (b) Label-correcting

Arc (2,5) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Label-correcting algorithm: running example

6

@<\<\
2%@ 2%@

2 3

(a) A directed graph (b) Label-correcting

Arc (3,5) selected

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 8/18

Improved label-correcting algorithm

Algorithm Label-correcting

d(s) « 0 and pred(s) <+ 0

: d(j) « oo for each node j € N\ {s}

while some arc (i) satisfies d(j) > d(i) + ¢; do
d(j) — d(i) + ¢
pred(j) < i

end while

SR

@ Searching for arcs that violate optimality conditions is time-consuming
@ When to correct distance labels?

@ First note labels of nodes can only decrease
@ When node i's label decreases, we might have d(j) > d(i) + ¢;
© When a node's label decreases, add out-going edges to LIST for check

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 9/18

Label-correcting algorithm: finite-time termination

Algorithm Label-correcting

: d(s) «+ 0 and pred(s) «+ 0

: d(j) < oo for each node j € N\ {s}

while some arc (i,) satisfies d(j) > d(i) + ¢; do
d(j) < d(i) + c;
pred(j) < i

end while

S

Suppose the arc lengths are integers
@ Each update decreases the distance label of some node by at least 1
@ The range of distance label [-(n—1)C,(n—1)C]
@ The total number of updates is bounded by 2n(n —1)C = O(n%C)

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 10 / 18

Label-correcting algorithm: finite-time termination

Algorithm Label-correcting

: d(s) «+ 0 and pred(s) «+ 0

: d(j) < oo for each node j € N\ {s}

while some arc (i,) satisfies d(j) > d(i) + ¢; do
d(j) < d(i) + c;
pred(j) < i

end while

S

Suppose the arc lengths are integers
@ Each update decreases the distance label of some node by at least 1
@ The range of distance label [-(n—1)C,(n—1)C]
@ The total number of updates is bounded by 2n(n —1)C = O(n%C)

This is an exponential-time algorithm!
What's bad? No good bound on the number of iterations.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 10 / 18

Bellman-Ford algorithm: procedure

Algorithm Bellman-Ford

d(s) < 0 and pred(s) < 0
: d(j) < oo for each node j € N\ {s}
fork=1:n—-1do
for (i,j) € Ado
if d(j) > d(i) + ¢; then
d(j) « d(i) + ¢
pred(j) < i
end if
end for
end for

© XN RN

—
e

@ Clearly, the algorithm runs in O(mn)

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 11 /18

Bellman-Ford algorithm: analysis

Algorithm Bellman-Ford

1: d(s) + 0 and pred(s) «< 0
2: d(j) < oo for each node j € N\ {s}
3: fork=1:n—1do

4: for (i,j) € Ado

5: if d(j) > d(i) + c; then
6: d(j) < d(i) + ¢

7 pred(j) < i

8: end if

9: end for

10: end for

After k iterations

After k iterations, each distance label d(i) is the length of the shortest
s — i path that uses k or fewer arcs provided such paths exist.

Thm: if no negative cycles, B-F finds shortest paths.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 12 /18

Detecting negative cycles: first attempt

Algorithm Bellman-Ford
1: d(s) « 0 and pred(s) < 0
2: d(j) + oo for each node j € N\ {s}
3: fork=1:n—1do
4. for (i,j) € Ado

5: if d(j) > d(i) + ¢; then
6: d(j) < d(i) + ¢

7 pred(j) < i

8: end if

9: end for

10: end for

@ When B-F algorithm terminates, there are two possibilities

@ The distance labels do not satisfy the optimality condition
@ The distance labels satisfy the optimality condition

@ In case 1, negative cycles must exist (correctness of B-F)

@ In case 2, negative cycles cannot exist

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 13 /18

Detecting negative cycles: second attempt

@ B-F does not identify a negative cycle
@ B-F cannot terminate early

o B-F builds a predecessor graph G, defined by (pred(/), i)

Size of distance labels

If (7,j) is an arc in the predecessor graph, then d(j) > d(i) + ¢j.

Costs of paths
For an h — ¢ path in predecessor graph, the path cost at most d(¢

Appearance of cycles

The first cycle appearing in predecessor graph must have negative cost.

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 14 /18

Detecting negative cycles: second attempt

Algorithm Bellman-Ford with cycle detection

1: d(s) < 0 and pred(s) < 0
2: d(j) < oo for each node j € N\ {s}
3: fork=1:n—-1do

4: for (i,j) € Ado
5: if d(j) > d(i) + ¢; then
6: d(j) < d(i) + ¢
7 pred(j) < i
8: if G, contains a cycle C then
9: Return C
10: end if
11: end if
12: end for
13: end for

e This algorithm rums in O(mn?) (DFS for detecting cycles in O(n))

@ Further improvement possible, running time can be reduced to O(mn)

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 15 /18

All-pair shortest path problems

@ How can we find shortest paths between every pair of nodes?
o Naively run Dijkstra (O(mlog, n)) or B-F (O(mn)) n times
@ When there are negative arcs (no negative cycles)
@ Run B-F once and transform to nonnegative arc case
e For arc (i,), set ¢; = d(i) + ¢ — d(j)
® Run Dijkstra afterwards with ¢’
© Total running time O(mnlog, n)

Why does it work?

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 16 / 18

All-pair shortest path problems

@ How can we find shortest paths between every pair of nodes?
o Naively run Dijkstra (O(mlog, n)) or B-F (O(mn)) n times
@ When there are negative arcs (no negative cycles)
@ Run B-F once and transform to nonnegative arc case
e For arc (i,), set ¢; = d(i) + ¢ — d(j)
® Run Dijkstra afterwards with ¢’
© Total running time O(mnlog, n)

Why does it work?

Faster algorithm in O(n3) is available: Floyd-Warshall algorithm

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 16 / 18

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

Negative-Weight Single-Source Shortest Paths in
Near-linear Time

Christian Wulff-Nilsen
BARC, Department of Computer Science
University of Copenhagen
Copenhagen, Denmark
koolooz@diku.dk

Aaron Bernstein Danupon Nanongkai
Department of Computer Science MPLfor Informarics,
Rutgers University University of Copenhagen,
New Brunswick. NJ. USA and KTH

bemsici@gmail.com danupon@gmail.com

Abstract—We present a randomized algorithm that computes
single-source shortest paths (SSSP) in O(m log® (n)log W) time
when edge weights are integral and can be negative.! This
essentially resolves the classic negative-weight SSSP problem.
The previous bounds are O((m + n'®)logW) [BLNPSSSW
FOCS’20] and m?*/3*° Jog W [AMV FOCS’20]. Near-linear
time algorithms were known previously only for the special case
of planar directed graphs [Fakcharoenphol and Rao FOCS’01].

In contrast to all recent developments that rely on sophisticated
continuous optimization methods and dynamic algorithms, our
algorithm is simple: it requires only a simple graph decom-
position and elementary combinatorial tools. In fact, ours is
the first combinatorial algorithm for negative-weight SSSP to
break through the classic O(m./nlog W) bound from over three
decades ago [Gabow and Tarjan SICOMP’89].

Shortest path problems are not dead yet

What’s more, the new approach uses decades-
old mathematical techniques, eschewing more
sophisticated methods that have dominated

modern graph theory research.

“Ijust couldn’t believe such a simple
algorithm exists,” said Maximilian Probst
Gutenberg, a computer scientist at the Swiss
Federal Institute of Technology Zurich. “All of
it has been there for 40 years. It just took
someone to be really clever and determined to

make it all work.”

September 28, 2023

17 /18

Week 1-8 (AU4606 & Al4702):

Introduction (1 lecture)
Preparations (3 lectures)

e basics of graph theory
e algorithm complexity and data structure
e graph search algorithm

@ Shortest path problems (this & next lecture)
e Maximum flow problems (5 lectures)
e Minimum cost flow problems (3 lectures)
e Introduction to multi-agent systems (1 lecture)
@ Introduction to cloud networks (1 lecture)
Week 9-16 (AU4606):
@ Simplex and network simplex methods (2 lectures)
@ Global minimum cut problems (3 lectures)
@ Minimum spanning tree problems (3 lectures)

SSP Il (Lecture 6) AU4606/A14702 September 28, 2023 18 / 18

	Shortest path problems with negative weights
	Issues with Dijkstra's algorithm
	Optimality condition
	Label-correcting algorithm
	Bellman-Ford algorithm
	All-pair shortest path problems

