Maximum Flow Problems II

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

October 9, 2023

• Maximum flow problems: formulation

- What is a maximum flow problem?
- An application
- Maximum flow problems: preliminaries
	- Residual graphs
	- \bullet s-t cut
- Augmenting path algorithms
	- **Generic augmenting path algorithms**
	- Theoretical properties

Today

1 [Issues with generic augmenting path algorithms](#page-3-0)

- [A bad example](#page-4-0)
- [Roadmap for upcoming discussions](#page-9-0)

2 [Most improving augmenting path algorithm](#page-10-0)

- 3 [Capacity scaling algorithm](#page-21-0)
- 4 [Shortest augmenting path algorithm](#page-26-0)

Today

1 [Issues with generic augmenting path algorithms](#page-3-0)

- [A bad example](#page-4-0)
- [Roadmap for upcoming discussions](#page-9-0)

[Most improving augmenting path algorithm](#page-10-0)

[Capacity scaling algorithm](#page-21-0)

[Shortest augmenting path algorithm](#page-26-0)

An augmenting path $1 - 2 - 3 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 2 - 3 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 2 - 3 - 4$ exists and 1 unit flow can be sent An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent

An augmenting path $1 - 2 - 3 - 4$ exists and 1 unit flow can be sent An augmenting path $1 - 3 - 2 - 4$ exists and 1 unit flow can be sent An augmenting path $1 - 2 - 3 - 4$ exists and 1 unit flow can be sent · · ·

Algorithm Augmenting path

- $1 \cdot f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t

4:
$$
\delta(P) = \min\{r_{ij}, (i,j) \in P\}
$$

- 5: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 6: end while

Can we pick paths more wisely?

- **1** Choose path with maximum residual capacity (most improving)
- 2 Choose path with sufficiently large residual capacity (capacity scaling)
- **3** Choose shortest augmenting path (Edmonds–Karp)

Today

1 [Issues with generic augmenting path algorithms](#page-3-0)

- [A bad example](#page-4-0)
- [Roadmap for upcoming discussions](#page-9-0)

2 [Most improving augmenting path algorithm](#page-10-0)

[Capacity scaling algorithm](#page-21-0)

[Shortest augmenting path algorithm](#page-26-0)

Most improving augmenting path algorithm

Recall residual capacity $\delta(P)$ of an augmenting path P in a residual graph:

$$
\delta(P) = \min\{r_{ij}, (i,j) \in P\}
$$

Algorithm Most improving augmenting path

- $1: f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t that has maximum $\delta(P)$
- 4: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 5: end while

Intuition:

• If making sufficient progress each step, algorithm converges fast

Geometric improvement

Let z^k be the integer objective value of a maximization problem at the *k*-th iteration of an algorithm with $z^0=0$, and $z^*\leq H$ be the integer optimal value. If

$$
z^{k+1} - z^k \ge \alpha (z^* - z^k),
$$

for some $0 < \alpha < 1$, then the algorithm terminates in $O(\frac{\log H}{\alpha})$ $\frac{g \, H}{\alpha}$) iterations Intuition:

• If making sufficient progress each step, algorithm converges fast

Geometric improvement

Let z^k be the integer objective value of a maximization problem at the *k*-th iteration of an algorithm with $z^0=0$, and $z^*\leq H$ be the integer optimal value. If

$$
z^{k+1} - z^k \ge \alpha (z^* - z^k),
$$

for some $0 < \alpha < 1$, then the algorithm terminates in $O(\frac{\log H}{\alpha})$ $\frac{g \, H}{\alpha}$) iterations

Show that most improving augmenting path algorithm does exactly this

Flows in the original graph and residual graph

In most improving path algorithm

- **1** The per-step improvement is residual capacity of most improving path
- **2** Can we lower bound this improvement by some fractional of the distance between maximum and current flows?

Relationship between flows in original and residual graphs

Let f and f^* be a flow and a maximum flow in G , respectively. Then the maximum flow in $G(f)$ is equal to $v(f^*) - v(f)$.

Proof sketch

- Given f and f^* , define f' in $G(f)$
- Show that f' is indeed a flow in $G(f)$
- Show that $v(f') = v(f^*) v(f)$
- Show that f' is a maximum flow

For two flows f' and f'' , we write $f = f' \pm f''$ if

$$
f_{ij} = f'_{ij} \pm f''_{ij}, \quad \text{for all } (i,j) \in A
$$

Flow decomposition lemma

Given any positive flow f , there exist flows f^{1},\ldots,f^{ℓ} for some $\ell\leq m$ such that $f = \sum_{i=1}^\ell f^i$, where for each i , the arcs of f^i with positive flow form either a directed path from s to t or a directed cycle.

Flow decomposition lemma

Given any positive flow f , there exist flows f^{1},\ldots,f^{ℓ} for some $\ell\leq m$ such that $f = \sum_{i=1}^\ell f^i$, where for each i , the arcs of f^i with positive flow form either a directed path from s to t or a directed cycle.

Flows in the original graph and residual graph

Relationship between flows in original and residual graphs

Let f and f^* be a flow and a maximum flow in G , respectively. Then the maximum flow in $G(f)$ is equal to $v(f^*) - v(f)$.

Flow decomposition lemma

Given any positive flow f , there exist flows f^{1},\ldots,f^{ℓ} for some $\ell\leq m$ such that $f = \sum_{i=1}^\ell f^i$, where for each i , the arcs of f^i with positive flow form either a directed path from s to t or a directed cycle.

The above two imply immediately:

Residual capacity of a most improving path

Let f and f^* be a flow and a maximum flow in G , respectively. Then the residual capacity of a most improving path in $G(f)$ is at least 1 $\frac{1}{m}(v(f^*)-v(f)).$

Complexity of most improving augmenting path algorithm

Algorithm Most improving augmenting path

- 1: $f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t that has maximum $\delta(P)$
- 4: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 5: end while

Number of iterations (by the geometric improvement approach)

If capacities are integers, the most improving augmenting path algorithm computes a maximum flow in $O(m \log(mU))$ iterations.

Complexity of most improving augmenting path algorithm

Algorithm Most improving augmenting path

- 1: $f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t that has maximum $\delta(P)$
- 4: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 5: end while

Number of iterations (by the geometric improvement approach)

If capacities are integers, the most improving augmenting path algorithm computes a maximum flow in $O(m \log(mU))$ iterations.

How much time needed to find a most improving augmenting path?

- Sort arcs with residual capacity in descending order: $O(m \log m)$
- Add arc to graph one and one and check if a path exists: $O(m^2)$

Complexity of most improving augmenting path algorithm

Algorithm Most improving augmenting path

- 1: $f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t that has maximum $\delta(P)$
- 4: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 5: end while

Number of iterations (by the geometric improvement approach)

If capacities are integers, the most improving augmenting path algorithm computes a maximum flow in $O(m \log(mU))$ iterations.

How much time needed to find a most improving augmenting path?

- Sort arcs with residual capacity in descending order: $O(m \log m)$
- Add arc to graph one and one and check if a path exists: $O(m^2)$

Complexity

For integer capacities, most improving augmenting path algorithm returns a maximum flow in $O(m^3 \log(mU))$ $(O(m \log(mU)(m + n \log n)))$.

Today

1 [Issues with generic augmenting path algorithms](#page-3-0)

- [A bad example](#page-4-0)
- [Roadmap for upcoming discussions](#page-9-0)

[Most improving augmenting path algorithm](#page-10-0)

3 [Capacity scaling algorithm](#page-21-0)

[Shortest augmenting path algorithm](#page-26-0)

- Finding a most improving augmenting path is time-consuming
- How about finding a sufficiently improving path?

The idea is as follows

- **1** Set a large scaling parameter Δ
- **2** Keep all arcs in residual graph that have residual capacity at least ∆
- $\overline{\mathbf{3}}$ If no augmenting path exists, reduce Δ to $\frac{\Delta}{2}$
- **4** Repeat from 2

∆-residual graph

The Δ -residual graph $G(f, \Delta)$ with respect to a flow f is a subgraph of $G(f)$ that contains all arcs with residual capacity at least Δ .

Note: $G(f, 1) = G(f)$

Algorithm Capacity scaling algorithm

- $1: f \leftarrow 0$
- $2: \Delta \leftarrow 2^{\lfloor \log_2 U \rfloor}$
- 3: while Δ > 1 do
- 4: while $G(f, \Delta)$ contains a directed path from s to t do
- 5: Identify an augmenting path P from s to t in $G(f, \Delta)$

6:
$$
\delta(P) = \min\{r_{ij}, (i,j) \in P\}
$$

- 7: Augment $\delta(P)$ units of flow along P and update $G(f, \Delta)$
- 8: end while
- 9: $\Delta \leftarrow \frac{\Delta}{2}$
- 10: end while
	- The phase when Δ remains constant is called a scaling phase
	- A total of at most $|\log_2 U| + 1$ scaling phases will be performed
	- Since $G(f, 1) = G(f)$, we have generic augmenting path alg. lastly

Capacity scaling algorithm: complexity

- There are at most $O(\log U)$ iterations
- Need to bound the number of augmentations in each iteration next

Number of augmentations in scaling phases

There are at most $2m$ augmentations per scaling phase.

Proof sketch

- Each augmentation in $G(f, Δ)$ increases the flow by $Δ$
- Are there bounds on the maximum flow in $G(f, \Delta)$?

Complexity of capacity scaling

If the capacities are integers, the capacity scaling algorithm computes a maximum flow in $O(m^2 \log U)$

Today

1 [Issues with generic augmenting path algorithms](#page-3-0)

- [A bad example](#page-4-0)
- [Roadmap for upcoming discussions](#page-9-0)

[Most improving augmenting path algorithm](#page-10-0)

[Capacity scaling algorithm](#page-21-0)

4 [Shortest augmenting path algorithm](#page-26-0)

Starting from generic augmenting path algorithm, we have tried

- **1** Choose path with maximum residual capacity (most improving)
	- $O(m^3 \log(mU))$
- **2** Choose path with large residual capacity (capacity scaling)
	- $O(m^2 \log U)$

Starting from generic augmenting path algorithm, we have tried

- **1** Choose path with maximum residual capacity (most improving) $O(m^3 \log(mU))$
- **2** Choose path with large residual capacity (capacity scaling)
	- $O(m^2 \log U)$

Can we do even better?

Pushing flows along shortest paths

Algorithm Shortest augmenting path algorithm

- $1 \cdot f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify a shortest augmenting path P from s to t
- 4: $\delta(P) = \min\{r_{ii}, (i, j) \in P\}$
- 5: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 6: end while

Also known as Edmonds–Karp algorithm

Shortest augmenting path algorithm: analysis

• Distance label $d(i)$: shortest distance from *i* to *t* in residual graph

Monotonicity of distance labels

Let $d(i)$ and $d'(i)$ be the distance labels of node i in the residual graph at the beginning and end of an iteration, respectively. Then $d'(i) \geq d(i)$.

Distance labels are nondecreasing during the execution of the algorithm

Saturation of arcs

A given arc $(i, j) \in A$ becomes saturated $O(n)$ times during the execution of the algorithm.

- Each augmentation saturates at least one arc
- An arc can be saturated $O(n)$ times
- A total of $O(mn)$ augmentations can occur

The shortest augmenting path algorithm runs in $O(m^2n)$

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
	- basics of graph theory
	- algorithm complexity and data structure
	- graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (this and next few lectures)
- Minimum cost flow problems (2 lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)