Maximum Flow Problems III

AU4606: Network Optimization

AI4702: Network Intelligence and Optimization

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

October 16, 2023

Last few lectures

- Maximum flow problems: important concepts
	- Residual graphs
	- s -t cut
	- Augmenting paths
- **Generic augmenting path algorithms**
	- \bullet $O(mnU)$
- Most improving augmenting path algorithms
	- $O(m \log(mU)(m \log n))$
- Capacity scaling algorithms
	- $O(m^2 \log U)$
- Shortest path augmenting path algorithms
	- $O(m^2n)$

[An application to a combinatorial problem](#page-3-0)

[Push-relabel algorithm](#page-15-0)

• Let $G = (V, E)$ be an undirected graph

- For a subset $S \subset V$, $G(S) = (S, E(S))$ is the subgraph induced by S
	- $E(S) = \{(i, j) \in E \mid i \in S, j \in S\}$
- The density $D(S)$ of $G(S)$ is defined by

$$
D(S) = \frac{|E(S)|}{|S|}
$$

Given an undirected graph G , how to find a densest subgraph S^* ?

$$
S^* \in \operatorname*{argmax}_{S \subset V} D(S) = \operatorname*{argmax}_{S \subset V} \frac{|E(S)|}{|S|}
$$

Densest subgraph problem: an example

• $D({1}) = 0$

•
$$
D({1,2}) = \frac{1}{2}
$$

•
$$
D({1,2,3}) = \frac{2}{3}
$$

- $D({1, 2, 3, 4}) = 1$
- $D({2, 3, 4, 5}) = 1$
- $D(\{1, 2, 3, 4, 5\}) = \frac{6}{5}$

Enumeration of subsets is not computationally efficient

Given $G=(V,E)$, construct a flow network $G'=(V',E')$ as follows

- Introduce a source s and a sink node t, and $V' = V \cup \{s, t\}$
- Add directed arcs from s to nodes in V with capacity m (arc $\#$ in G)
- Add directed arcs from nodes in V to t with capacity $m + 2\gamma d_i$
	- γ is a parameter to be specified

For each arc $i, j \in E$, add arcs (i, j) and (j, i) to E' with capacity 1

Given $G=(V,E)$, construct a flow network $G'=(V',E')$ as follows

- Introduce a source s and a sink node t, and $V' = V \cup \{s, t\}$
- Add directed arcs from s to nodes in V with capacity m (arc $\#$ in G)
- Add directed arcs from nodes in V to t with capacity $m + 2\gamma d_i$
	- γ is a parameter to be specified
- For each arc $i, j \in E$, add arcs (i, j) and (j, i) to E' with capacity 1

Maximum flow in \boldsymbol{G}^{\prime} and γ

The maximum flow in G' is mn if and only if $\gamma \geq D^*.$

Maximum flow in \boldsymbol{G}^{\prime} and γ

The maximum flow in G' is mn if and only if $\gamma \geq D^*.$

Let D' be the second largest density

Densest subgraph

If $D' \leq \gamma < D^*$ and $\{s\} \cup X$ is a minimum cut in G' , then $(X, E(X))$ is a densest subgraph.

Maximum flow in \boldsymbol{G}^{\prime} and γ

The maximum flow in G' is mn if and only if $\gamma \geq D^*.$

Let D' be the second largest density

Densest subgraph

If $D' \leq \gamma < D^*$ and $\{s\} \cup X$ is a minimum cut in G' , then $(X, E(X))$ is a densest subgraph.

Algorithmic idea (binary search)

① Note
$$
0 \leq D^* \leq m
$$
, let $u = m$ and $\ell = 0$

- $\,$ Start from $\gamma = \frac{\ell + u}{2}$ 2
- **3** If maximum flow equals mn, then $\gamma \geq D^*$ and we set $u = \frac{u + \ell}{2}$ $\frac{+\ell}{2}$ and $\gamma = \frac{\ell+u}{2}$ 2
- **4** If maximum flow is smaller than mn , then $\gamma < D^*$ and we set $\ell = \frac{n+\ell}{2}$ 2 and $\gamma = \frac{\ell + u}{2}$ 2 But how to certify $D' \leq \gamma < D^*$?

Maximum flow III (Lecture 9) \overline{A} [AU4606/AI4702](#page-0-0) 0ctober 16, 2023 6 / 17

Algorithmic idea (binary search)

- $\textbf{0}$ Note $0\leq D^{*}\leq m$, let $u=m$ and $\ell=0$
- $\, {\bf 2} \,$ Start from an arbitrary $\gamma = \frac{\ell + u}{2} \,$ 2
- **3** If maximum flow equals mn, then $\gamma \geq D^*$ and we set $u = \frac{u+\ell}{2}$ $rac{+\ell}{2}$ and $\gamma = \frac{\ell+u}{2}$ 2
- **4** If maximum flow is smaller than mn , then $\gamma < D^*$ and we set $\ell = \frac{n+\ell}{2}$ 2 and $\gamma = \frac{\ell + u}{2}$ 2

But how to certify $D' \leq \gamma < D^*$?

Algorithmic idea (binary search)

- $\textbf{0}$ Note $0\leq D^{*}\leq m$, let $u=m$ and $\ell=0$
- $\, {\bf 2} \,$ Start from an arbitrary $\gamma = \frac{\ell + u}{2} \,$ 2

3 If maximum flow equals mn, then $\gamma \geq D^*$ and we set $u = \frac{u+\ell}{2}$ $rac{+\ell}{2}$ and $\gamma = \frac{\ell+u}{2}$ 2

4 If maximum flow is smaller than mn , then $\gamma < D^*$ and we set $\ell = \frac{n+\ell}{2}$ 2 and $\gamma = \frac{\ell + u}{2}$ 2

But how to certify $D' \leq \gamma < D^*$?

Bound on $D^* - D'$

For any graph G, we have $D^* - D' \geq \frac{1}{n^2}$ $\overline{n^2}$

Algorithmic idea (binary search)

- $\textbf{0}$ Note $0\leq D^{*}\leq m$, let $u=m$ and $\ell=0$
- $\, {\bf 2} \,$ Start from an arbitrary $\gamma = \frac{\ell + u}{2} \,$ 2
- **3** If maximum flow equals mn, then $\gamma \geq D^*$ and we set $u = \frac{u+\ell}{2}$ $rac{+\ell}{2}$ and $\gamma = \frac{\ell+u}{2}$ 2
- **4** If maximum flow is smaller than mn , then $\gamma < D^*$ and we set $\ell = \frac{n+\ell}{2}$ 2 and $\gamma = \frac{\ell + u}{2}$ 2

But how to certify $D' \leq \gamma < D^*$?

Bound on $D^* - D'$

For any graph G, we have $D^* - D' \geq \frac{1}{n^2}$ $\overline{n^2}$

If
$$
u - \ell \leq \frac{1}{n^2}
$$
, then we know $D' \leq \gamma < D^*$

Running time?

Algorithmic idea (binary search)

- $\textbf{0}$ Note $0\leq D^{*}\leq m$, let $u=m$ and $\ell=0$
- $\, {\bf 2} \,$ Start from an arbitrary $\gamma = \frac{\ell + u}{2} \,$ 2

3 If maximum flow equals mn, then $\gamma \geq D^*$ and we set $u = \frac{u+\ell}{2}$ $rac{+\ell}{2}$ and $\gamma = \frac{\ell+u}{2}$ 2

4 If maximum flow is smaller than mn , then $\gamma < D^*$ and we set $\ell = \frac{n+\ell}{2}$ 2 and $\gamma = \frac{\ell + u}{2}$ 2

But how to certify $D' \leq \gamma < D^*$?

Bound on $D^* - D'$

For any graph G, we have $D^* - D' \geq \frac{1}{n^2}$ $\overline{n^2}$

If $u - \ell \leq \frac{1}{n^2}$ $\frac{1}{n^2}$, then we know $D' \leq \gamma < D^*$

Running time? $O(\log n)$ maximum flow computations

[An application to a combinatorial problem](#page-3-0)

Augmenting path algorithms

Two different types of algorithms

- **1** Augmenting path algorithms where balance constraints are maintained
- **2** Push-relabel algorithms where some nodes have excesses

Algorithm Augmenting path algorithm

- 1: $f \leftarrow 0$
- 2: while $G(f)$ contains a directed path from s to t do
- 3: Identify an augmenting path P from s to t
- 4: $\delta(P) = \min\{r_{ij}, (i,j) \in P\}$
- 5: Augment $\delta(P)$ units of flow along P and update $G(f)$
- 6: end while
- In augmenting path algorithms, flows are pushed along paths, and flow balance equations are satisfied all the time

Can we push flows on individual arcs?

Push-relabel algorithms: preflows and excesses

Preflows and excesses

An s-t preflow $f : A \to \mathbb{R}_{\geq 0}$ is an assignment of nonnegative reals to arcs such that

①
$$
0 \leq f_{ij} \leq u_{ij}
$$
 for all $(i, j) \in A$

\n**②** for all $i \in N \setminus \{s, t\}$,

\n
$$
\sum_{j:(j,i) \in A} f_{ji} - \sum_{j:(i,j) \in A} f_{ij} \geq 0
$$
\nFor $i \in N \setminus \{s, t\}$, the excess $e(i) = \sum_{j:(j,i) \in A} f_{ji} - \sum_{j:(i,j) \in A} f_{ij} \geq 0$.

Push-relabel algorithms: preflows and excesses

Preflows and excesses

An s-t preflow $f : A \to \mathbb{R}_{\geq 0}$ is an assignment of nonnegative reals to arcs such that

0
$$
0 \leq f_{ij} \leq u_{ij}
$$
 for all $(i, j) \in A$

\n**2** for all $i \in N \setminus \{s, t\}$,

\n
$$
\sum_{j:(j,i) \in A} f_{ji} - \sum_{j:(i,j) \in A} f_{ij} \geq 0
$$
\nFor $i \in N \setminus \{s, t\}$, the excess $e(i) = \sum_{j:(j,i) \in A} f_{ji} - \sum_{j:(i,j) \in A} f_{ij} \geq 0$.

Push-relabel algorithm maintains a preflow at intermediate stages

- A node $i \in N \setminus \{s, t\}$ is active if $e(i) > 0$
- \bullet Push flows along an arc when node *i* is active
- When no nodes are active, a feasible flow is established

Since a preflow f satisfies $0 \leq f_{ij} \leq u_{ij}$, residual graph $G(f)$ can be defined

Since a preflow f satisfies $0 \leq f_{ij} \leq u_{ij}$, residual graph $G(f)$ can be defined

Distance labels

Given a flow (preflow) f, a distance function $d: N \to \mathbb{Z}_{\geq 0}$ satisfies

- $d(t) = 0$
- \bullet $d(i) \leq d(j) + 1$ for arcs (i, j) in residual graph $G(f)$

An arc $(i, j) \in G(f)$ is admissible if $d(i) = d(i) + 1$

Since a preflow f satisfies $0 \leq f_{ij} \leq u_{ij}$, residual graph $G(f)$ can be defined

Distance labels

Given a flow (preflow) f, a distance function $d: N \to \mathbb{Z}_{\geq 0}$ satisfies

 $d(t) = 0$ \bullet $d(i) \leq d(j) + 1$ for arcs (i, j) in residual graph $G(f)$

An arc $(i, j) \in G(f)$ is admissible if $d(i) = d(i) + 1$

Distance labels

Let $d(i)$ for $i \in N$ be distance labels, the following two statements hold \bullet $d(i)$ is a lower bound on the shortest path length from *i* to *t* in $G(f)$ **2** if $d(i) = n$, then there is no directed path from *i* to *t* in $G(f)$

Since a preflow f satisfies $0 \leq f_{ij} \leq u_{ij}$, residual graph $G(f)$ can be defined

Distance labels

Given a flow (preflow) f, a distance function $d: N \to \mathbb{Z}_{\geq 0}$ satisfies

 $d(t) = 0$ \bullet $d(i) \leq d(j) + 1$ for arcs (i, j) in residual graph $G(f)$

An arc $(i, j) \in G(f)$ is admissible if $d(i) = d(i) + 1$

Distance labels

Let $d(i)$ for $i \in N$ be distance labels, the following two statements hold \bullet $d(i)$ is a lower bound on the shortest path length from *i* to *t* in $G(f)$ **2** if $d(i) = n$, then there is no directed path from *i* to *t* in $G(f)$

Why distance labels here are just lower bounds?

Push-relabel algorithms: procedure

Algorithm Push-relabel algorithm

```
1 \cdot f \leftarrow 02: d(s) \leftarrow n3: d(i) ← 0 for i \in N \setminus \{s\}4: f_{si} \leftarrow u_{si} for all (s, j) \in A5: while there is an active node i do
 6: if there is j such that (i, j) is admissible (d(i) = d(j) + 1) then
 7: \delta \leftarrow \min\{e(i), r_{ii}\}8: f_{ii} \leftarrow f_{ii} + \delta9: else
10: d(i) \leftarrow \min_{i:(i,j)\in G(f)} \{d(j)+1\}11: end if
12: end while
```
- Send flows from active nodes to neighboring nodes with smaller label **1** Nodes with excesses are active (having flows accumulated at the nodes) **2** Distance labels are estimates of distances to sink
- Relabel amounts to "move a node upward" (water flowing downhill)
- "Water" either flows into the sink or back to the source

Push-relabel algorithms: procedure

Algorithm Push-relabel algorithm

 $1 \cdot f \leftarrow 0$ 2: $d(s) \leftarrow n$ 3: $d(i)$ ← 0 for $i \in N \setminus \{s\}$ 4: $f_{si} \leftarrow u_{si}$ for all $(s, j) \in A$ 5: while there is an active node i do 6: if there is j such that (i, j) is admissible $(d(i) = d(j) + 1)$ then 7: $\delta \leftarrow \min\{e(i), r_{ii}\}$ 8: $f_{ii} \leftarrow f_{ii} + \delta$ 9: else 10: $d(i) \leftarrow \min_{i:(i,j)\in G(f)} \{d(j)+1\}$ $11:$ end if 12: end while

At the beginning:

- All out-going neighbors of s are active
- The distance labels are valid because $(s, j) \notin G(f)$
- An active node is relabeled in the first iteration

Maximum flow III (Lecture 9) [AU4606/AI4702](#page-0-0) October 16, 2023 12 / 17

In (b) :

• Pick active node 3: no admissible arcs, increase $d(3)$ and obtain (c)

In (c) :

• Pick active node 3: push flow $min{4, 5} = 4$ on $(3, 4)$, obtain (d) In (d) :

• Pick active node 2: no admissible arcs, increase $d(2)$ and obtain (e)

In (e) :

• Pick active node 2: push flow $min\{2, 1\} = 1$ on $(2, 4)$, obtain (f) In (f) :

• Pick active node 2: no admissible arcs, increase $d(2)$ and obtain (g)

In (g) :

• Pick active node 2: push flow $min\{1, 3\} = 1$ on $(2, 3)$, obtain (h) $ln(h)$:

• Pick active node 3: push flow $min\{1, 1\} = 1$ on $(3, 4)$, obtain (i) In (i)

• No active nodes, algorithm terminates

Push-relabel algorithms: bounding number of relabeling

Preflows

The push-relabel algorithm maintains a preflow.

Valid distance labels

The push-relabel algorithm maintains a valid distance labeling.

Preflows

The push-relabel algorithm maintains a preflow.

Valid distance labels

The push-relabel algorithm maintains a valid distance labeling.

Positive excesses and paths

At any stage of the algorithm, for each node i with positive excess $e(i) > 0$, there exists a directed path from *i* to *s* in the residual graph.

Corollary: for any $i \in N$, $d(i) \leq 2n-1$

Preflows

The push-relabel algorithm maintains a preflow.

Valid distance labels

The push-relabel algorithm maintains a valid distance labeling.

Positive excesses and paths

At any stage of the algorithm, for each node i with positive excess $e(i) > 0$, there exists a directed path from *i* to *s* in the residual graph.

Corollary: for any $i \in N$, $d(i) \leq 2n-1$

Total number of relabel operations

The number of relabel operations in the push-relabel algorithm is $O(n^2)$.

Push-relabel algorithms: bounding number of pushes

Recall flow $\delta = \min\{e(i), r_{ii}\}\$ is pushed in a push operation

- A saturating push is a push where $\delta = r_{ii}$
- Otherwise, it is a nonsaturating push

Total number of saturating pushes

The number of saturating pushes operations performed in the push-relabel algorithm is $O(mn)$.

Push-relabel algorithms: bounding number of pushes

Recall flow $\delta = \min\{e(i), r_{ii}\}\$ is pushed in a push operation

- A saturating push is a push where $\delta = r_{ii}$
- Otherwise, it is a nonsaturating push

Total number of saturating pushes

The number of saturating pushes operations performed in the push-relabel algorithm is $O(mn)$.

Total number of nonsaturating pushes

The number of nonsaturating pushes operations performed in the push-relabel algorithm is $O(mn^2)$.

Push-relabel algorithms: bounding number of pushes

Recall flow $\delta = \min\{e(i), r_{ii}\}\$ is pushed in a push operation

- A saturating push is a push where $\delta = r_{ii}$
- Otherwise, it is a nonsaturating push

Total number of saturating pushes

The number of saturating pushes operations performed in the push-relabel algorithm is $O(mn)$.

Total number of nonsaturating pushes

The number of nonsaturating pushes operations performed in the push-relabel algorithm is $O(mn^2)$.

Complexity

The complexity of the push-relabel algorithm is $O(mn^2)$.

Which active node to examine in each iteration is not specified

- FIFO push-relabel: pick active nodes in a first-in-first-out order $O(n^3)$
- Highest label push-relabel: pick active node with highest dist. label $O(n^2\sqrt{m})$
- Excess scaling: pick active nodes with sufficiently large excess
	- $O(nm + n^2 \log U)$

Upcoming

Week 1-8 (AU4606 & AI4702):

- Introduction (1 lecture)
- Preparations (3 lectures)
	- basics of graph theory
	- algorithm complexity and data structure
	- graph search algorithm
- Shortest path problems (3 lectures)
- Maximum flow problems (this and previous few lectures)
- Minimum cost flow problems (next two lectures)
- Introduction to multi-agent systems (1 lecture)
- Introduction to cloud networks (1 lecture)

Week 9-16 (AU4606):

- Simplex and network simplex methods (2 lectures)
- Global minimum cut problems (3 lectures)
- Minimum spanning tree problems (3 lectures)