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Welcome

Welcome to AU7036: Introduction to Multi-agent Systems

Instructors
Xiaoming Duan (26): averaging systems and flow dynamics
Peng Wang (22): nonlinear (time-varying) systems and advanced topics

Main references
Francesco Bullo, Lectures on Network Systems, Kindle Direct
Publishing, version 1.6, Sep 1, 2022.
https://fbullo.github.io/lns/.
Chinese translation is available at
https://jbox.sjtu.edu.cn/l/B1pjsb (Ongoing project)
Wei Ren, Yongcan Cao. Distributed Coordination of Multi-agent
Networks: Emergent Problems, Models, and Issues, Springer London,
2011.
Wei Ren, Randal W. Beard. Distributed Consensus in Multi-vehicle
Cooperative Control: Theory and Applications, Springer London, 2008.
Fei Chen, Wei Ren. Distributed Average Tracking in Multi-agent
Systems, Springer Cham, 2020.
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Course content

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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Course content

Week 1-6:

Motivating Examples (Lecture 1) AU7036 February 20, 2024 4 / 23



Class times and grading

Class times

Present theory

Do proofs (mostly involve system theory, matrix and graph theory)

Grading

40% homework: 6 problem sets (might involve coding)

60% course project

A presentation on related topics (30%)
A final report (30%)
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Disclaimer

We do not study anything related to (artificial) intelligence

No foundation models
No deep/reinforcement learning
No learning at all

We only study simplistic models (but with hopefully rich theory)

We do not talk about engineering implementations (i.e., only theory)

But...
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Questions?
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Today

Motivating problems

Opinion dynamics

Averaging in wireless sensor networks

Flocking dynamics

Distributed parameter estimation
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Synchronization in nature

Video available at https:
//www.ted.com/talks/steven_strogatz_the_science_of_sync

Steven Strogatz: The science of sync, 2008
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Coordination of engineered systems

Video available at https://www.ted.com/talks/vijay_kumar_
robots_that_fly_and_cooperate?language=en

Vijay Kumar: Robots that fly ... and cooperate, 2012
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Motivating example: opinion dynamics

Interactions in a social influence network

A group of n individuals who must act together as a team

Each individual i has its own opinion pi for some estimate/event

Individual i is influenced by other members j ̸= i of the group

How to model predictions that the individual will revise its estimate?
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Motivating example: opinion dynamics

Interactions in a social influence network

The French-Harary-DeGroot model predicts that

pi (k + 1) =
n∑

j=1

aijpj(k)

aij ≥ 0 denotes the weight that individual i assigns to individual j
aii describes the attachment of individual i to its own opinion
aij is an interpersonal influence weight that i accords to j

n∑
j=1

aij = 1 for all i
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Motivating example: opinion dynamics

Interactions in a social influence network

The French-Harary-DeGroot model predicts that

pi (k + 1) =
n∑

j=1

aijpj(k)

In matrix form
p(k + 1) = Ap(k)

where A =

a11 . . . a1n
...

. . .
...

an1 . . . ann



A is entry-wise nonnegative

Each row has unit sum
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Motivating example: opinion dynamics

The French-Harary-DeGroot model

p(k + 1) = Ap(k)

where A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 A is entry-wise nonnegative

Each row has unit sum

Scientific questions of interest

Is this model of opinion dynamics believable (empirical evidence)?

How does one measure the coefficients aij?

Are there more realistic, empirically-motivated models?

Conditions for convergence? What is the final estimate?
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Motivating example: wireless sensor networks

A wireless sensor network

A collection of spatially-distributed sensing/computing devices

Measure environmental variables (e.g., temperature, sound, light, etc.)
Perform local computations and transmit information to neighbors

How can all devices obtain an accurate estimate in a distributed way?
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Motivating example: wireless sensor networks

Wireless sensor networks: linear averaging

Each node has a measured temperature xi (0)

Apply the following linear averaging algorithm

xi (k + 1) = average(xi (k), {xj(k), for all neighbors j})

e.g., x1(k + 1) = x1(k)/2 + x2(k)/2

Update rule x(k + 1) = Ax(k)
x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3



x1(k)
x2(k)
x3(k)
x4(k)


Again we have a nonnegative, unit-row-sum matrix
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Motivating example: wireless sensor networks

Wireless sensor networks: linear averaging
x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3



x1(k)
x2(k)
x3(k)
x4(k)



Scientific questions of interest

Does the algorithm converge? Do all nodes agree?

Is the final value equal to the average of the initial conditions?

Conditions on the graph and the matrix for the algorithm to converge?

How quick is the convergence?
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Motivating example: flocking dynamics

Flocking dynamics: a simple alignment rule

Each animal steers towards the average heading of its neighbors

θ̇i =


(θj − θi ), if one neighbor
1
2(θj1 − θi ) +

1
2(θj2 − θi ), if two neighbors

1
m (θj1 − θi ) + · · ·+ 1

m (θjm − θi ), if m neighbors

= average
(
{θj , for all neighbors j}

)
− θi
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= average
(
{θj , for all neighbors j}

)
− θi

In matrix form
θ̇ = Aθ − θ = (A− I )θ

Scientific questions of interest

How valid is the model in understanding/reproducing the behavior?

What are equilibrium headings and when are they attractive?

Conditions for the graph to ensure a proper flocking behavior?
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Motivating example: distributed parameter estimation

Distributed parameter estimation

yi = Biθ + vi , for all i ∈ {1, · · · , n}

where

θ ∈ Rm is an unknown parameter to be estimated via measurements

yi ∈ Rmi is the measurement

Bi is a known measurement matrix

vi is random measurement noise

Assumption

Vectors v1, · · · , vn are independent jointly Gaussian with

Zero-mean E[vi ] = 0mi and
Positive-definite covariance E[viv⊤

i ] = Σi = Σ⊤
i

Measurement parameters satisfy:
∑

i mi ≥ m and

B1
...
Bn

 is full rank.
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Motivating example: distributed parameter estimation

Distributed parameter estimation

yi = Biθ + vi , for all i ∈ {1, · · · , n}

We aim to minimize the following weighted least-square error

min
θ

n∑
i=1

(
yi − Biθ

)⊤
Σ−1
i

(
yi − Biθ

)

The solution is given by

θ∗ =
( n∑

i=1

B⊤
i Σ−1

i Bi

)−1
n∑

i=1

B⊤
i Σ−1

i yi

How do we compute θ∗ in a distributed way?
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Motivating example: distributed parameter estimation

θ∗ =
( n∑

i=1

B⊤
i Σ−1

i Bi

)−1
n∑

i=1

B⊤
i Σ−1

i yi

1 Compute the average of the quantities B⊤
i Σ−1

i Bi and B⊤
i Σ−1

i yi

2 Compute the optimal estimate via

θ̂∗ = average(B⊤
1 Σ−1

1 B1, · · · ,B⊤
n Σ−1

n Bn)
−1

× average(B⊤
1 Σ−1

1 y1, · · · ,B⊤
n Σ−1

n yn)
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Upcoming

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems
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Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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