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Last time

Motivating problems

Opinion dynamics

Averaging in wireless sensor networks

Flocking dynamics

Distributed parameter estimation
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Averaging algorithms in wireless sensor networks

Suppose each sensor i has initial measurement xi (0)

Averaging protocol

x1(k + 1) =
1

2
(x1(k) + x2(k))

x2(k + 1) =
1

4
(x1(k) + x2(k) + x3(k) + x4(k))

x3(k + 1) =
1

3
(x2(k) + x3(k) + x4(k))

x4(k + 1) =
1

3
(x2(k) + x3(k) + x4(k))

Questions of interest

(Stability) Does the iteration converge? Conditions for convergence?
(Equilibrium) Where does it converge to?
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Discrete-time linear systems


x1(k + 1)
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x4(k + 1)
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1
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1
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1
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

x1(k)
x2(k)
x3(k)
x4(k)


Discrete-time linear system

A square matrix A ∈ Rn×n defines a discrete-time linear system by

x(k + 1) = Ax(k), x(0) = x0.
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Solutions to discrete-time linear systems

x(k + 1) = Ax(k), x(0) = x0.

⇕

x(k) = Akx0

The asymptotic behavior depends on Ak

Semi-convergent and convergent matrices

A matrix A ∈ Rn×n is

semi-convergent if lim
k→∞

Ak exists, and

convergent if it is semi-convergent and lim
k→∞

Ak = 0n×n
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Semi-convergent and convergent matrices

Semi-convergent and convergent matrices

A matrix A ∈ Rn×n is

semi-convergent if lim
k→∞

Ak exists, and

convergent if it is semi-convergent and lim
k→∞

Ak = 0n×n

[
1 0
0 1

] [
1 0
0 −1

] [
−0.9 0
0 1

] [
0.8 0
0 0.9

]
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Jordan normal form: definitions

Jordan normal form

Each matrix A ∈ Cn×n is similar to a block diagonal matrix J ∈ Cn×n,
called the Jordan normal form of A, given by

J =

J1 · · · 0
...

. . .
...

0 · · · Jm


where each block Ji , called a Jordan block, is a square matrix of size ji
and of the form

Ji =


λi 1 · · · 0

0 λi

. . .
...

...
. . .

. . . 1
0 · · · 0 λi


Clearly, m ≤ n and j1 + · · ·+ jm = n
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Jordan normal form: properties

T−1AT = J =

J1 · · · 0
...

. . .
...

0 · · · Jm


Smallest Jordan block

[
λi

]
Diagonalization is a special case with all size one blocks

[
λi

]
Eigenvalues of Jordan blocks (diagonals) are that of A (similarity)

Two blocks may have the same eigenvalues, e.g.,λi 1 0
0 λi 0
0 0 λi


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Jordan normal form: an example

T−1AT = J =

J1 · · · 0
...

. . .
...

0 · · · Jm


Algebraic multi. λi : sum of sizes of all blocks having λi as eigenvalues

Geometric multi. λi : number of blocks having λi as eigenvalues

Simple eigenvalue: algebraic multi. = geometric multi. = 1

Semisimple eigenvalue: algebraic multi. = geometric multi.
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Jordan normal form: why useful

x(k) = Akx0

Note that A = TJT−1, then

For a square matrix A with Jordan blocks Ji , the following are equivalent:

A is semi-convergent (resp. convergent)

J is semi-convergent (resp. convergent), and

Each block Ji is semi-convergent (resp. convergent)
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Jordan normal form: powers of Jordan blocks

Powers of Jordan blocks:

Note that

Block Ji of size 1 is convergent if and only if |λi | < 1

Block Ji of size 1 is semi-convergent iff |λi | < 1 or λi = 1, and

Block Ji of size ≥ 1 is semi-convergent/convergent iff |λi | < 1
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Convergence of discrete-time linear systems

Spectrum and spectral radius

Given a square matrix A

The spectrum spec(A) of A is the set of eigenvalues of A; and

The spectral radius ρ(A) is the maximum norm of eigenvalues of A

ρ(A) = max{|λ|, λ ∈ spec(A)}

Thm: Convergence and spectral radius

For a square matrix A

A is convergent if and only if ρ(A) < 1,

A is semi-convergent but not convergence iff

1 1 is a semisimple eigenvalue
2 All other eigenvalues have magnitudes less than 1

Matrix theory (Lecture 2) AU7036 February 23, 2024 12 / 23



Today

1 Discrete-time linear systems

2 Jordan normal form

3 Row-stochastic matrices and their spectral radius

4 Nonnegative matrices and Perron-Frobenius theorem



Row-stochastic matrices


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3



x1(k)
x2(k)
x3(k)
x4(k)

 = Ax(k)

How to determine the spectrum of A? “Obvious” properties of A

Nonnegative, i.e., A ≥ 0

Row sums are one, i.e., A1n = 1n

These matrices are called row-stochastic matrices

Spectral radius?
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Gershgorin Disk Theorem

Gershgorin Disk Theorem

For any square matrix A ∈ Rn×n,

spec(A) ⊂ ∪i={1,··· ,n}{z ||z − aii | ≤
n∑

j=1,j ̸=i

|aij |} (1)


10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11


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Spectrum of row-stochastic matrices

Row-stochastic matrices

A matrix A is row-stochastic if it satisfies

nonnegative, i.e., A ≥ 0

row sums are one, i.e., A1n = 1n

Spectral properties of row-stochastic matrices

If A is row-stochastic, then

1 is an eigenvalue

the spectral radius is 1
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Nonnegative matrices

Nonnegative matrices

A matrix A is nonnegative if A ≥ 0.

Two special classes of nonnegative matrices:

Irreducible and primitive matrices

A ∈ Rn×n, n ≥ 2 has nonnegative entries and is

irreducible if
n−1∑
k=0

Ak > 0

primitive if there exists a positive integer k such that Ak > 0

[
1 0
0 1

] [
0 1
1 0

] [
1 1
0 1

] [
1
2

1
2

1 0

] [
1 1
1 1

]
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Nonnegative matrices

Primitive matrices are irreducible

If a square matrix A is primitive, then it is also irreducible.

Cayley-Hamilton Theorem

Let A be an n × n matrix and
pA(λ) = |λIn − A| = λn + cn−1λ

n−1 + · · ·+ c0 be its characteristic
polynomial, then pA(A) = An + cn−1A

n−1 + · · ·+ c0 = 0.
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Perron-Frobenius theorem

Perron-Frobenius Theorem

Let A ∈ Rn×n, n ≥ 2. If A is nonnegative, then

1 there exists a real eigenvalue λ ≥ |µ| ≥ 0 for all other eigenvalues µ

2 the right and left eigenvectors v , w of λ can be selected nonnegative

If additionally A is irreducible, then

3 the eigenvalue λ is strictly positive and simple

4 the right and left eigenvectors v , w of λ are unique and positive

If additionally A is primitive, then

5 the eigenvalue λ > |µ| for all other eigenvalues µ

λ = ρ(A) is called the dominant eigenvalue of A

These are sufficient but not necessary conditions
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Perron-Frobenius theorem: examples

A1 =

[
1 0
0 1

]
, spec(A1) = {1, 1}

A2 =

[
0 1
1 0

]
, spec(A2) = {1,−1}

A3 =

[
1 1
0 1

]
, spec(A3) = {1, 1}

A4 =

[
1
2

1
2

1 0

]
, spec(A4) = {1,−1

2}

A5 =

[
1 1
1 1

]
, spec(A5) = {2, 0}
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Perron-Frobenius theorem: examples


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3



x1(k)
x2(k)
x3(k)
x4(k)

 = Ax(k)

Already know that 1 is an eigenvalue and spectral radius is 1

Is it irreducible?

A2 =


3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36


1 is a simple eigenvalue (may exist other eigenvalues on the unit circle)

Is it primitive?
1 > |µ| for all other eigenvalues µ

It is semi-convergent
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Perron-Frobenius theorem: applications to matrix power

Powers of nonnegative matrices with a simple and dominant eigenvalue

Let A ∈ Rn×n, n ≥ 2 be nonnegative with dominant eigenvalue λ and the
right and left eigenvectors are denoted by v and w of λ, v⊤w = 1. If λ is
simple and strictly larger in magnitude than all other eigenvalues, then we
have

lim
k→∞

Ak

λk
= vw⊤

Proof: Jordan normal form
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Perron-Frobenius theorem: applications to matrix power
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1
2 0 0

1
4
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4
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4

0 1
3

1
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0 1
3

1
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1
3



x1(k)
x2(k)
x3(k)
x4(k)

 = Ax(k)

The matrix is primitive

Dominant eigenvalue 1 is simple and strictly larger than others

Ak → vw⊤ where v and w are right and left eigenvectors and v⊤w = 1

Let us verify w = [1/6, 1/3, 1/4, 1/4]⊤ is a left dominant eigenvector

lim
k→∞

Ak = 14w
⊤ =


1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4
1/6 1/3 1/4 1/4


Average consensus cannot be reached!
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Upcoming

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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