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Motivating problems

@ Opinion dynamics

@ Averaging in wireless sensor networks
@ Flocking dynamics
o

Distributed parameter estimation
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© Discrete-time linear systems
© Jordan normal form
© Row-stochastic matrices and their spectral radius

@ Nonnegative matrices and Perron-Frobenius theorem



© Discrete-time linear systems



Averaging algorithms in wireless sensor networks

lﬂ sensor node
I[jI gateway node

@ Suppose each sensor i has initial measurement x;(0)

o Averaging protocol
(k1) = 2 0a(k) + (k)
solk+1) = %(xl(k) +50(k) + x3(k) + xa(k))
xa(k +1) = %(Xg(k) +xa(k) + xa(K))
xa(k+1) = %(xz(k) + x3(k) + xa(k))

@ Questions of interest

o (Stability) Does the iteration converge? Conditions for convergence?
o (Equilibrium) Where does it converge to?
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Discrete-time linear systems

Xl(k + 1) % % 0 0 Xl(k)
Xg(k + ].) |z 3 % % Xz(k)
X3(k + 1) 0 % % % X3(k)
X4(k + ].) 0 3 3 3 X4(k)

Discrete-time linear system

A square matrix A € R"*" defines a discrete-time linear system by

x(k + 1) = Ax(k), x(0) = xp.
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Solutions to discrete-time linear systems

x(k + 1) = Ax(k), x(0) = xo.

)
x(k) = Akxg

The asymptotic behavior depends on Ak

Semi-convergent and convergent matrices

A matrix A € R™" is

@ semi-convergent if lim AX exists, and
k—00

@ convergent if it is semi-convergent and klim AK =0,
—00
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Semi-convergent and convergent matrices

Semi-convergent and convergent matrices

A matrix A € R™" is

@ semi-convergent if I|m Ak exists, and
k—o00

@ convergent if it is semi-convergent and I|m AKX = 0,xn

ERTI I I R ]
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© Jordan normal form



Jordan normal form: definitions
Jordan normal form

Each matrix A € C"™" is similar to a block diagonal matrix J € C"*",
called the Jordan normal form of A, given by

S - 0
J=|3 =
0 - J,

where each block J;, called a Jordan block, is a square matrix of size j;
and of the form

A1 0

Ji = 0 X\
-
0 0 A\

Clearly m<nand j1+--+jn=n
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Jordan normal form: properties

Ji - 0
TTTAT=J=|: .. =

0 - J,
Smallest Jordan block [)/]

Diagonalization is a special case with all size one blocks [\;]

Eigenvalues of Jordan blocks (diagonals) are that of A (similarity)

Two blocks may have the same eigenvalues, e.g.,
Ai 10
0 A O
0 0 XN
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Jordan normal form: an example

h - 0
THAT=J=|: -.
0 - Jp
@ Algebraic multi. A;: sum of sizes of all blocks having A; as eigenvalues
@ Geometric multi. A\;: number of blocks having A; as eigenvalues

@ Simple eigenvalue: algebraic multi. = geometric multi. =1

@ Semisimple eigenvalue: algebraic multi. = geometric multi.
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Jordan normal form: an example

s o 0
THAT=J=|: -.

0 - Jp
@ Algebraic multi. A;: sum of sizes of all blocks having A; as eigenvalues
@ Geometric multi. A\;: number of blocks having A; as eigenvalues
@ Simple eigenvalue: algebraic multi. = geometric multi. =1
@ Semisimple eigenvalue: algebraic multi. = geometric multi.
(7 1 0 0 0 0 0]
0710000 7 has algebraic mult. 4 and geometric mult. 2,
0 070000 so that 7 is neither simple nor semisimple
0007000 , pe ple.
0000S8G0 0 8 has algebraic and geometric mult. 2, so it is semisimple,
000O0UO0Z 88D 9 has algebraic and geometric mult. 1, so it is simple.
000000 9
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Jordan normal form: why useful

x(k) = Akxo
Note that A= TJT 1, then
J{f O --- 0
k.
Ak =rgr=t.7grt. ... .TJgT ' =TT =T 0 J; .0 P
k times : . . 0
0o --- 0 ‘]Tkn

For a square matrix A with Jordan blocks J;, the following are equivalent:
e A is semi-convergent (resp. convergent)
e J is semi-convergent (resp. convergent), and

@ Each block J; is semi-convergent (resp. convergent)
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Jordan normal form: powers of Jordan blocks

Powers of Jordan blocks:

D ) RV (4 D () P
[Ai-“],[o’ /\’” ] 0 A RN L | o (Bake
o0 X T N G
0 0 b
Note that
0, if [N\ <1,
1, if A\=1and h =0,

lim k"AF =
k—o0 non-existent or unbounded, if (|A| =1 with XA # 1) or (|]A| > 1)

or(A\=1andh=1,2,...).

@ Block J; of size 1 is convergent if and only if |A\;] <1
@ Block J; of size 1 is semi-convergent iff |A\;j| <1 or \; =1, and
@ Block J; of size > 1 is semi-convergent/convergent iff |\;| <1
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Convergence of discrete-time linear systems
Spectrum and spectral radius

Given a square matrix A

@ The spectrum spec(A) of A is the set of eigenvalues of A; and

@ The spectral radius p(A) is the maximum norm of eigenvalues of A

p(A) = max{|A|, A € spec(A)}

Thm: Convergence and spectral radius
For a square matrix A
@ A is convergent if and only if p(A) < 1,

@ A is semi-convergent but not convergence iff

@ 1 is a semisimple eigenvalue
@ All other eigenvalues have magnitudes less than 1
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© Row-stochastic matrices and their spectral radius



Row-stochastic matrices

a(k+1] 3 3 0 0] Pa(k)
(k1) _ e g oq g ] _ 4
xs(k+1)] ~ |0 % % % x3(k)|
xa(k +1) 0 3 3 3] Dalk)

How to determine the spectrum of A? “Obvious” properties of A
@ Nonnegative, i.e., A>0
@ Row sums are one, i.e., Al, =1,

These matrices are called row-stochastic matrices

Spectral radius?
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Gershgorin Disk Theorem

Gershgorin Disk Theorem

For any square matrix A € R"*",
n

spec(A) C Uiqy,. mpizllz —ail < Y agl} (1)
J=1#i
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Gershgorin Disk Theorem

Gershgorin Disk Theorem

For any square matrix A € R"*",

n
spec(A) C Uiqy,. mpizllz —ail < Y agl} (1)
J=Lj#i
1014
X  Eigenvalues
.
° 100 -1 0 1
S A 02 8 02 02
£ ] 1 1 2 1
-1 -1 -1 -11
T o 5 0 5 10 15

Real axis
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Spectrum of row-stochastic matrices

Row-stochastic matrices

A matrix A is row-stochastic if it satisfies
@ nonnegative, i.e., A> 0

@ row sums are one, i.e., Al, =1,

(L
QN

Spectral properties of row-stochastic matrices

If A is row-stochastic, then
@ 1 is an eigenvalue

@ the spectral radius is 1
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@ Nonnegative matrices and Perron-Frobenius theorem



Nonnegative matrices

Nonnegative matrices
A matrix A is nonnegative if A > 0.

Two special classes of nonnegative matrices:

Irreducible and primitive matrices

A € R™" n> 2 has nonnegative entries and is

n—1
e irreducible if > Ak >0
k=0

@ primitive if there exists a positive integer k such that AX >0
10 01 11 11
01 10 01 11
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Nonnegative matrices

Primitive matrices are irreducible

If a square matrix A is primitive, then it is also irreducible.
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Nonnegative matrices

Primitive matrices are irreducible

If a square matrix A is primitive, then it is also irreducible.

Cayley-Hamilton Theorem

Let A be an n X n matrix and
pa(A) = [Mp — Al = A"+ c,_1A" 1 + -+ + ¢ be its characteristic
polynomial, then pa(A) = A" + ¢, 1A" 1 +... 4 ¢ =0.
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Nonnegative matrices

Primitive matrices are irreducible
If a square matrix A is primitive, then it is also irreducible.

Cayley-Hamilton Theorem

Let A be an n X n matrix and
pa(A) = [Mp — Al = A"+ c,_1A" 1 + -+ + ¢ be its characteristic
polynomial, then pa(A) = A" + ¢, 1A" 1 +... 4 ¢ =0.

non-negative irreducible primitive positive
(A>0) (XR2s AF > 0) (there exists k (A>0)
such that AF > 0)
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Perron-Frobenius theorem
Perron-Frobenius Theorem

Let A€ R™" n> 2. If Ais nonnegative, then

@ there exists a real eigenvalue A\ > |u| > 0 for all other eigenvalues p

@ the right and left eigenvectors v, w of A can be selected nonnegative
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Perron-Frobenius theorem
Perron-Frobenius Theorem

Let A€ R™" n> 2. If Ais nonnegative, then

@ there exists a real eigenvalue A\ > |u| > 0 for all other eigenvalues p

@ the right and left eigenvectors v, w of A can be selected nonnegative

If additionally A is irreducible, then
© the eigenvalue A is strictly positive and simple

O the right and left eigenvectors v, w of A are unique and positive
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Perron-Frobenius theorem
Perron-Frobenius Theorem

Let A€ R™" n> 2. If Ais nonnegative, then

@ there exists a real eigenvalue A\ > |u| > 0 for all other eigenvalues p

@ the right and left eigenvectors v, w of A can be selected nonnegative

If additionally A is irreducible, then
© the eigenvalue A is strictly positive and simple

O the right and left eigenvectors v, w of A are unique and positive

If additionally A is primitive, then

O the eigenvalue \ > |u] for all other eigenvalues
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Perron-Frobenius theorem
Perron-Frobenius Theorem

Let A€ R™" n> 2. If Ais nonnegative, then

@ there exists a real eigenvalue A\ > |u| > 0 for all other eigenvalues p

@ the right and left eigenvectors v, w of A can be selected nonnegative

If additionally A is irreducible, then
© the eigenvalue A is strictly positive and simple

O the right and left eigenvectors v, w of A are unique and positive

If additionally A is primitive, then

O the eigenvalue \ > |u] for all other eigenvalues

o A = p(A) is called the dominant eigenvalue of A
@ These are sufficient but not necessary conditions
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Perron-Frobenius theorem: examples

o A = [(1) 2] spec(Ar) = {1,1}
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Perron-Frobenius theorem: examples
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Perron-Frobenius theorem: examples

o A = 10 , spec(A1) = {1,1}
_0 1_

o Ay = (1) é , spec(Az) = {1,-1}
L q

o A3 = 0 1l spec(A3z) = {1,1}
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Perron-Frobenius theorem: examples

o A = 10 , spec(A1) = {1,1}
_0 1_

o Ay = (1) é , spec(A2) = {1,—1}
L q

o A3 = , spec(A3) = {1,1}
_0 1_
L 1 1

0 Ay = _i (2) ) spec(A4) = {1, —§}
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Perron-Frobenius theorem: examples

o A = 10 , spec(A1) = {1,1}
_0 1_

o A=} o|. spec(A) = {1,-1)
S

o A3 = , spec(A3) = {1,1}
_0 1_
11 X

0 Ay = _i (2):|, spec(A4) = {1, —§}
1 1

o As = 1 1], spec(As) = {2,0}
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Perron-Frobenius theorem: examples

a(k+1] 3 3 0 0] Pa(k)
xo(k + 1) i 12 % % x2(k) = Ax(k)
(k1)) |0 5 3 5] |x(k)
xa(k + 1) 0 3 3 3l balk)

@ Already know that 1 is an eigenvalue and spectral radius is 1
@ Is it irreducible?
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Perron-Frobenius theorem: examples

a(k+1] 3 3 0 0] Pa(k)
xo(k + 1) i 12 % % x2(k) = Ax(k)
(k1)) |0 5 3 5] |x(k)
xa(k + 1) 0 3 3 3l balk)

@ Already know that 1 is an eigenvalue and spectral radius is 1
@ Is it irreducible?

3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36

A% =

o 1 is a simple eigenvalue (may exist other eigenvalues on the unit circle)
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Perron-Frobenius theorem: examples

a(k+1] 3 3 0 0] Pa(k)
xo(k + 1) i 12 % % x2(k) = Ax(k)
(k1)) |0 5 3 5] |x(k)
xa(k + 1) 0 3 3 3l balk)

@ Already know that 1 is an eigenvalue and spectral radius is 1
@ Is it irreducible?

3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36

A% =

o 1 is a simple eigenvalue (may exist other eigenvalues on the unit circle)
o Is it primitive?
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Perron-Frobenius theorem: examples

a(k+1] 3 3 0 0] Pa(k)
xo(k + 1) i 12 % % x2(k) = Ax(k)
(k1)) |0 5 3 5] |x(k)
xa(k + 1) 0 3 3 3l balk)

@ Already know that 1 is an eigenvalue and spectral radius is 1
@ Is it irreducible?

3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36

A% =

o 1 is a simple eigenvalue (may exist other eigenvalues on the unit circle)
o Is it primitive?
e 1 > |ul for all other eigenvalues i
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Perron-Frobenius theorem: examples

a(k+1] 3 3 0 0] Pa(k)
xo(k + 1) i 12 % % x2(k) = Ax(k)
(k1)) |0 5 3 5] |x(k)
xa(k + 1) 0 3 3 3l balk)

@ Already know that 1 is an eigenvalue and spectral radius is 1
@ Is it irreducible?

3/8 3/8 1/8 1/8
3/16 17/48 11/48 11/48
1/12 11/36 11/36 11/36
1/12 11/36 11/36 11/36

A% =

o 1 is a simple eigenvalue (may exist other eigenvalues on the unit circle)
o Is it primitive?

e 1 > |ul for all other eigenvalues i
@ It is semi-convergent
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Perron-Frobenius theorem: applications to matrix power

Powers of nonnegative matrices with a simple and dominant eigenvalue

Let A€ R™" n > 2 be nonnegative with dominant eigenvalue A and the
right and left eigenvectors are denoted by v and w of A, viw =1. If Xis
simple and strictly larger in magnitude than all other eigenvalues, then we
have
. Ak
Iy S =om

T

Proof: Jordan normal form
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Perron-Frobenius theorem: applications to matrix power

a(k+ D] 3 3 0 0] Pa(k)
x(k+1)| |7 2 % % xa(k) = Ax(k)
xa(k+1)| |0 5 5 ) xs(k)
xa(k +1) 0 3 3 3] balk)

@ The matrix is primitive
e Dominant eigenvalue 1 is simple and strictly larger than others
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Perron-Frobenius theorem: applications to matrix power

a(k+ D] 3 3 0 0] Pa(k)
x(k+1)| |7 2 % % xa(k) = Ax(k)
xa(k+1)| |0 5 5 ) xs(k)
xa(k +1) 0 3 3 3] balk)

@ The matrix is primitive

e Dominant eigenvalue 1 is simple and strictly larger than others
o A¥ — vwT where v and w are right and left eigenvectors and v'w =1

o Let us verify w = [1/6,1/3,1/4,1/4]" is a left dominant eigenvector
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Perron-Frobenius theorem: applications to matrix power

x1(k+1) % %
X2(k+ 1) _ |z 3z
x3(k +1) 0 %
xa(k + 1) 0 3

@ The matrix is primitive

WFWIFEAI= O

WIFWI=EAI= O

t
(K| = Ax(k
(k)

FE X

e Dominant eigenvalue 1 is simple and strictly larger than others
o A¥ — vwT where v and w are right and left eigenvectors and v'w =1

o Let us verify w = [1/6,1/3,1/4,1/4]" is a left dominant eigenvector

1/6 1/3

. 1/6 1/3
k __ T _

Jim A= law = 1/6 1/3

1/6 1/3

Average consensus cannot be reached!
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Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems
Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory
Nonlienar averaging systems (Euler-Lagrangian, oscillators)
Other advanced topics

Week 15-16:

Project presentation
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