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Graphs, neighbors and degrees

A (undirected) graph is a pair G = (V ,E ) such that
V is the set of nodes
E is set of edges of form {u, v} for u, v ∈ V (unordered pair of nodes)
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V ={1, 2, 3, 4, 5, 6}
E ={{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 6}, {5, 6}}

Two nodes u and v are neighbors if {u, v} ∈ E
e.g., nodes 1 and 2 are neighbors, nodes 1 and 5 are not neighbors

The degree of v is the number of neighbors of v
e.g., degree of node 2 is 3, degree of node 6 is 2
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Graphs: examples

(a) Path graph (b) Cycle graph (c) Star graph (d) Complete graph

(e) Complete bipartite graph (f) Grid graph
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Digraphs, in/out-neighbors and in/out-degrees

A directed graph (digraph) is a pair G = (V ,E ) such that
V is the set of nodes
E ⊂ V × V is a set of edges (ordered pair of nodes)
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A directed graph with a self-loop at node 1

V ={1, 2, 3, 4, 5, 6, 7}
E ={(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 6), (4, 7), (5, 3), (5, 7), (6, 7)}

In G with an edge (u, v) ∈ E
u is an in-neighbor of v (e.g., node 5 is an in-neighbor of node 7)
v is an out-neighbor of u (e.g., node 7 is an out-neighbor of node 4)

In-degree of v is the number of in-neighbors of v (e.g., din(3) = 3)
Out-degree of v is the number of out-neighbors (e.g., dout(3) = 1)
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Subgraphs

G ′ = (V ′,E ′) is a subgraph of graph (digraph) G = (V ,E ) if
1 V ′ ⊂ V , and
2 E ′ ⊂ E

G ′ = (V ′,E ′) is spanning subgraph of graph (digraph) G = (V ,E ) if
1 V ′ = V , and
2 E ′ ⊂ E
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(a) Graph G
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(b) A subgraph of G
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(c) A spanning subgraph
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(a) Directed graph G
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(b) A subgraph of G
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(c) A spanning subgraph
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Walks and cycles
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A walk (path) is sequence of nodes (i1, i2, . . . , ir ) such that

ik ∈ V for k ∈ {1, . . . , r}
{ik , ik+1} ∈ E for k ∈ {1, . . . , r − 1}

e.g., (1, 2), (1, 2, 5, 6, 5, 3)

A simple walk is a walk with no node repetitions except first/last node
e.g., (1, 2), (1, 2, 5, 6, 4), (2, 5, 6, 4, 2)

A (simple) cycle is a simple walk starting and ending at same node
e.g., (1, 3, 5, 2, 1), (2, 5, 6, 4, 2)
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Connectivity and connected component

A graph is connected if there exists a walk between any two nodes

A connected component of a graph is a maximal connected subgraph

A graph that contains no cycles is acyclic

A connected acyclic graph is a tree
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Directed walks and cycles
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A directed walk (path) is sequence of nodes (i1, i2, . . . , ir ) such that

ik ∈ V for k ∈ {1, . . . , r}
(ik , ik+1) ∈ E for k ∈ {1, . . . , r − 1}

e.g., (1, 2), (1, 2, 3, 6), (2, 4, 5, 2, 3)

A simple directed walk is a directed walk with no node repetitions
except first/last node
e.g., (1, 2), (5, 3, 6, 7), (2, 4, 5, 2)

A (simple) cycle is a simple walk starting and ending at same node
e.g., (2, 4, 5, 2)

A digraph is acyclic if it contains no cycles
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Sources and sinks
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A source node is a node with in-degree 0
e.g., node 1

A sink node is a node with out-degree 0
e.g., node 7

Are there graphs with no source and sink nodes?

Sources and sinks in directed acyclic graph (DAG)

Every acyclic digraph has at least one source and at least one sink.
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Directed trees
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A directed tree is an acyclic digraph with a special node called root
such that every other node can be reached from root by a unique walk

A directed spanning tree of a graph is a spanning subgraph that is a
directed tree
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(a) Directed graph G
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(b) A directed spanning tree
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Connectivity
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Four notions of connectivity

1 A digraph is strongly connected if walk exists between any two nodes

2 A digraph is weakly connected if undirected version is connected

3 A digraph possesses a globally reachable node if one node can be
reached from all other nodes

4 A digraph possesses a directed spanning tree if one node can reach all
other nodes
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Periodicity of strongly connected digraphs

The period of a strongly connected digraph is the greatest common
division of the lengths of all simple cycles
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3

A digraph is periodic if its period is > 1; otherwise, it is aperiodic

Other equivalent definitions?
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Condensation digraphs

A strongly connected component of a digraph is a maximal strongly
connected subgraph
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(a) Digraph G
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The condensation digraph C (G ) = (H,R) of digraph G = (V ,E ):

H is the set of strongly connected components of G
An edge (H1,H2) ∈ R exists if (u, v) ∈ E for some u ∈ H1 and v ∈ H2

G does not have self-loops
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Condensation digraphs

(a) A digraph G (b) strongly connected compo-
nents of G

(c) Condensation di-
graph C(G)

Properties of condensation digraphs

The condensation digraph C (G ) is acyclic, and following are equivalent

G contains a globally reachable node

C (G ) contains a globally reachable node

C (G ) contains a unique sink
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Condensation digraphs: exercise 1

1 2 3 4
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Condensation digraphs: exercise 2

1 2 3 4

5 6 7 8

9 10

1 2 3 4

5 6 7 8

9 10

Graph theory (Lecture 3) AU7036 February 23, 2024 17 / 19



Condensation digraphs: exercise 2

1 2 3 4

5 6 7 8

9 10

1 2 3 4

5 6 7 8

9 10

Graph theory (Lecture 3) AU7036 February 23, 2024 17 / 19



Condensation digraphs: exercise 2

1 2 3 4

5 6 7 8

9 10

1 2 3 4

5 6 7 8

9 10

Graph theory (Lecture 3) AU7036 February 23, 2024 17 / 19



Today

1 Graphs and digraphs

2 Walks and connectivity in undirected graphs

3 Walks and connectivity in digraphs

4 Weighted digraphs



Weighted digraphs

A weighted digraph is a triplet G = (V ,E , {ae}e∈E ) such that

V is the set of nodes
E ⊂ V × V is a set of edges (ordered pair of nodes)
{ae}e∈E is a collection of strictly positive weights for the edges E
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a12 = 3.7, a13 = 2.6, a21 = 8.9,

a24 = 1.2, a34 = 1.9, a35 = 2.3,

a51 = 4.4, a54 = 2.7, a55 = 4.4.

Weighted in-degree and Weighted out-degree of vi are defined by

din(vi ) =
n∑

j=1

aij dout(vi ) =
n∑

j=1

aji

A weighted digraph is weight-balanced if for vi ∈ V , din(vi ) = dout(vi )
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1.9
<latexit sha1_base64="3bXv2RtsRX6tUN0t5BfXOf8b6+I=">AAAB9HicbZDLSsNAFIZPvNZ6q7p0M1iELiQkKqi7ghuXFe0F2lAm00k6dDIJM5NiCX0Et7pxJ259H8GHcZpmoa0HBj7+/xzOmd9POFPacb6sldW19Y3N0lZ5e2d3b79ycNhScSoJbZKYx7LjY0U5E7Spmea0k0iKI5/Ttj+6nfntMZWKxeJRTxLqRTgULGAEayM9uPZNv1J1bCcvtAxuAVUoqtGvfPcGMUkjKjThWKmu6yTay7DUjHA6LfdSRRNMRjikXYMCR1SdqXGYg5c95UdP0anxBiiIpXlCo1z9PZvhSKlJ5JvOCOuhWvRm4n9eN9XBtZcxkaSaCjJfFKQc6RjNEkADJinRfGIAE8nM1YgMscREm5zKJg538fPL0Dq33Qvbub+s1mtFMCU4hhOogQtXUIc7aEATCITwDC/wao2tN+vd+pi3rljFzBH8KevzB3u/kVw=</latexit>

2.7
<latexit sha1_base64="bow67AvubBOYZ7rwFHnYI3XI9ZM=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqUJdFty4rGgv0IYymU7SoZNJmJkUS+kjuNWNO3Hr+wg+jNM0C209MPDx/+dwzvx+wpnSjvNlFTY2t7Z3irulvf2Dw6Py8UlbxakktEViHsuujxXlTNCWZprTbiIpjnxOO/74duF3JlQqFotHPU2oF+FQsIARrI30ULPrg3LFsZ2s0Dq4OVQgr+ag/N0fxiSNqNCEY6V6rpNob4alZoTTeamfKppgMsYh7RkUOKLqUk3CDLzZU3b0HF0Yb4iCWJonNMrU37MzHCk1jXzTGWE9UqveQvzP66U6uPFmTCSppoIsFwUpRzpGiwTQkElKNJ8awEQyczUiIywx0SankonDXf38OrRrtntlO/fXlUY1D6YIZ3AOVXChDg24gya0gEAIz/ACr9bEerPerY9la8HKZ07hT1mfP3ozkVs=</latexit>

a12 = 3.7, a13 = 2.6, a21 = 8.9,

a24 = 1.2, a34 = 1.9, a35 = 2.3,

a51 = 4.4, a54 = 2.7, a55 = 4.4.

Weighted in-degree and Weighted out-degree of vi are defined by

din(vi ) =
n∑

j=1

aij dout(vi ) =
n∑

j=1

aji

A weighted digraph is weight-balanced if for vi ∈ V , din(vi ) = dout(vi )
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Weighted digraphs

A weighted digraph is a triplet G = (V ,E , {ae}e∈E ) such that

V is the set of nodes
E ⊂ V × V is a set of edges (ordered pair of nodes)
{ae}e∈E is a collection of strictly positive weights for the edges E

1.2

4.4

8.9

2.3

3.7

4.4

2

31 5

4

2.6
<latexit sha1_base64="fT7KEWt2cPfhU91YkPTMkY+6poc=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqaIuC25cVrQXaEOZTCfp0MkkzEyKpfQR3OrGnbj1fQQfxmmahbYeGPj4/3M4Z34/4Uxpx/myCmvrG5tbxe3Szu7e/kH58Kil4lQS2iQxj2XHx4pyJmhTM81pJ5EURz6nbX90O/fbYyoVi8WjniTUi3AoWMAI1kZ6qNlX/XLFsZ2s0Cq4OVQgr0a//N0bxCSNqNCEY6W6rpNob4qlZoTTWamXKppgMsIh7RoUOKLqXI3DDLzpU3b0DJ0Zb4CCWJonNMrU37NTHCk1iXzTGWE9VMveXPzP66Y6uPGmTCSppoIsFgUpRzpG8wTQgElKNJ8YwEQyczUiQywx0SankonDXf78KrRqtnthO/eXlXo1D6YIJ3AKVXDhGupwBw1oAoEQnuEFXq2x9Wa9Wx+L1oKVzxzDn7I+fwB4pZFa</latexit>

1.9
<latexit sha1_base64="3bXv2RtsRX6tUN0t5BfXOf8b6+I=">AAAB9HicbZDLSsNAFIZPvNZ6q7p0M1iELiQkKqi7ghuXFe0F2lAm00k6dDIJM5NiCX0Et7pxJ259H8GHcZpmoa0HBj7+/xzOmd9POFPacb6sldW19Y3N0lZ5e2d3b79ycNhScSoJbZKYx7LjY0U5E7Spmea0k0iKI5/Ttj+6nfntMZWKxeJRTxLqRTgULGAEayM9uPZNv1J1bCcvtAxuAVUoqtGvfPcGMUkjKjThWKmu6yTay7DUjHA6LfdSRRNMRjikXYMCR1SdqXGYg5c95UdP0anxBiiIpXlCo1z9PZvhSKlJ5JvOCOuhWvRm4n9eN9XBtZcxkaSaCjJfFKQc6RjNEkADJinRfGIAE8nM1YgMscREm5zKJg538fPL0Dq33Qvbub+s1mtFMCU4hhOogQtXUIc7aEATCITwDC/wao2tN+vd+pi3rljFzBH8KevzB3u/kVw=</latexit>

2.7
<latexit sha1_base64="bow67AvubBOYZ7rwFHnYI3XI9ZM=">AAAB9HicbZDLSsNAFIZP6q3WW9Wlm8EidCEhqUJdFty4rGgv0IYymU7SoZNJmJkUS+kjuNWNO3Hr+wg+jNM0C209MPDx/+dwzvx+wpnSjvNlFTY2t7Z3irulvf2Dw6Py8UlbxakktEViHsuujxXlTNCWZprTbiIpjnxOO/74duF3JlQqFotHPU2oF+FQsIARrI30ULPrg3LFsZ2s0Dq4OVQgr+ag/N0fxiSNqNCEY6V6rpNob4alZoTTeamfKppgMsYh7RkUOKLqUk3CDLzZU3b0HF0Yb4iCWJonNMrU37MzHCk1jXzTGWE9UqveQvzP66U6uPFmTCSppoIsFwUpRzpGiwTQkElKNJ8awEQyczUiIywx0SankonDXf38OrRrtntlO/fXlUY1D6YIZ3AOVXChDg24gya0gEAIz/ACr9bEerPerY9la8HKZ07hT1mfP3ozkVs=</latexit>

a12 = 3.7, a13 = 2.6, a21 = 8.9,

a24 = 1.2, a34 = 1.9, a35 = 2.3,

a51 = 4.4, a54 = 2.7, a55 = 4.4.

Weighted in-degree and Weighted out-degree of vi are defined by

din(vi ) =
n∑

j=1

aij dout(vi ) =
n∑

j=1

aji

A weighted digraph is weight-balanced if for vi ∈ V , din(vi ) = dout(vi )
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Upcoming

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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