Elements of Algebraic Graph Theory

AU7036: Introduction to Multi-agent Systems

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

February 27, 2024

- Graphs and directed graphs
	- Definitions, neighbors, degrees, subgraphs
- Walks and connectivity in undirected graphs
	- Walks, cycles, connected components, acyclicity, trees
- Walks and connectivity in digraphs
	- Directed walks and cycles, sources/sinks, DAG, directed tree
	- Strong/weak connectivity, spanning tree, globally reachable node
	- Period, strongly connected components
	- Condensation digraph
- Weighted digraphs

[The adjacency matrix](#page-3-0)

[Algebraic graph theory: graphs and adjacency matrices](#page-10-0)

[Graph theoretical characterization of special matrices](#page-23-0)

[The adjacency matrix](#page-3-0)

[Algebraic graph theory: graphs and adjacency matrices](#page-10-0)

[Graph theoretical characterization of special matrices](#page-23-0)

Weighted digraph and adjacency matrix

Given a weighted digraph $G = (V, E, \{a_e\}_{e \in E})$, the weighted adjacency matrix A satisfies

\n- $$
A_{ij} = a_{(i,j)}
$$
 if $(i,j) \in E$
\n- $A_{ij} = 0$ otherwise
\n

Weighted digraph and adjacency matrix

- Given a weighted digraph $G = (V, E, \{a_e\}_{e \in E})$, the weighted adjacency matrix A satisfies
	- $A_{ij} = a_{(i,j)}$ if $(i,j) \in E$ • $A_{ii} = 0$ otherwise
- 1.2 4.4 8.9 2.3 3.7 4.4 $\overline{2}$ $1 - 2.6 \rightarrow 3 - 2.3 \rightarrow 5$ $\overline{4}$ 2*.*6 $h^{1.9}$ $h^{2.7}$ $\bigcap^{4.4}$ $A =$ $\sqrt{ }$ 0 3.7 2.6 0 0 8.9 0 0 1.2 0 0 0 0 1.9 2.3 0 0 0 0 0 4.4 0 0 2.7 4.4
	- Given a weighted digraph $G = (V, E, \{a_e\}_{e \in E})$, the binary adjacency matrix $A \in \{0,1\}^{n \times n}$ satisfies

$$
a_{ij} = \begin{cases} 1, & \text{if } (i,j) \in E, \\ 0, & \text{otherwise.} \end{cases}
$$

1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

Weighted degrees

• Given a weighted digraph G and adjacency matrix A

Weighted out-degree matrix

$$
D_{\text{out}} = \text{diag}(A\mathbb{1}_n) = \begin{bmatrix} d_{\text{out}}(1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_{\text{out}}(n) \end{bmatrix}
$$

• Weighted in-degree matrix

$$
D_{\text{in}} = \text{diag}(A^{\top} \mathbb{1}_n) = \begin{bmatrix} d_{\text{in}}(1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_{\text{in}}(n) \end{bmatrix}
$$

Adjacency matrix: examples

• These are undirected graphs

Adjacency matrix: examples

- These are undirected graphs
- Why do the patterns look so "pretty"?

Useful concepts: permutation matrices

A permutation matrix is a square binary matrix with precisely one 1 in every row and column

$$
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

 $P^{-1} = P^{\top}$ P^TAP is a similarity transformation and reorder rows and columns of A

$$
P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad P^{\top}AP = \begin{bmatrix} a_{22} & a_{23} & a_{21} \\ a_{32} & a_{33} & a_{31} \\ a_{12} & a_{13} & a_{11} \end{bmatrix}
$$

[The adjacency matrix](#page-3-0)

2 [Algebraic graph theory: graphs and adjacency matrices](#page-10-0)

[Graph theoretical characterization of special matrices](#page-23-0)

G is undirected $\iff A = A^{\top}$

- G is undirected $\iff A = A^{\top}$
- G is weight-balanced \iff $A\mathbb{1}_n = A^{\top} \mathbb{1}_n$

- G is undirected $\iff A = A^{\top}$
- G is weight-balanced \iff $A\mathbb{1}_n = A^{\top} \mathbb{1}_n$
- (no self-loop) node *i* is a sink $\iff (A\mathbb{1}_n)_i = 0$

- G is undirected $\iff A = A^{\top}$
- G is weight-balanced \iff $A\mathbb{1}_n = A^{\top} \mathbb{1}_n$
- (no self-loop) node *i* is a sink $\iff (A\mathbb{1}_n)_i = 0$
- $($ no self-loop $)$ node i is a source $\iff (A^\top \mathbb{1}_n)_i = 0$

- G is undirected $\iff A = A^{\top}$
- G is weight-balanced \iff $A\mathbb{1}_n = A^{\top} \mathbb{1}_n$
- (no self-loop) node *i* is a sink $\iff (A\mathbb{1}_n)_i = 0$
- $($ no self-loop $)$ node i is a source $\iff (A^\top \mathbb{1}_n)_i = 0$
- Each node has weighted out-degree $1 \iff A$ is row-stochastic

- G is undirected $\iff A = A^{\top}$
- G is weight-balanced \iff $A\mathbb{1}_n = A^{\top} \mathbb{1}_n$
- (no self-loop) node *i* is a sink $\iff (A\mathbb{1}_n)_i = 0$
- $($ no self-loop $)$ node i is a source $\iff (A^\top \mathbb{1}_n)_i = 0$
- Each node has weighted out-degree $1 \iff A$ is row-stochastic
- Each node has weighted out- and in-degree $1 \iff A$ is doubly-stochastic

Let A be an adjacency matrix

- We first note (obviously) $A_{ii} > 0$ if and only if
	- \bullet (i, j) is an edge of G
	- \bullet there exists a directed walk of length 1 from *i* to *j*

Let A be an adjacency matrix

- We first note (obviously) $A_{ii} > 0$ if and only if
	- \bullet (i, j) is an edge of G
	- \bullet there exists a directed walk of length 1 from *i* to *j*
- We then note that

$$
(A2)ij = (ith row of A) \cdot (jth column of A) = \sum_{h=1}^{n} (A)ih(A)hj
$$

Let A be an adjacency matrix

- We first note (obviously) $A_{ii} > 0$ if and only if
	- \bullet (i, j) is an edge of G
	- there exists a directed walk of length 1 from i to j
- We then note that

$$
(A2)ij = (ith row of A) \cdot (jth column of A) = \sum_{h=1}^{n} (A)ih(A)hj
$$

This implies $(\mathcal{A}^2)_{ij}>0$ if and only if

• there exists a node h such that $(A)_{ih} > 0$ and $(A)_{hi} > 0$

Let A be an adjacency matrix

- We first note (obviously) $A_{ii} > 0$ if and only if
	- \bullet (i, j) is an edge of G
	- there exists a directed walk of length 1 from i to j
- We then note that

$$
(A2)ij = (ith row of A) \cdot (jth column of A) = \sum_{h=1}^{n} (A)ih(A)hj
$$

This implies $(\mathcal{A}^2)_{ij}>0$ if and only if

- there exists a node h such that $(A)_{ih} > 0$ and $(A)_{hi} > 0$
- (i, h) and (h, j) are edges of G

Let A be an adjacency matrix

- We first note (obviously) $A_{ii} > 0$ if and only if
	- \bullet (i, j) is an edge of G
	- there exists a directed walk of length 1 from i to j
- We then note that

$$
(A2)ij = (ith row of A) \cdot (jth column of A) = \sum_{h=1}^{n} (A)ih(A)hj
$$

This implies $(\mathcal{A}^2)_{ij}>0$ if and only if

- there exists a node h such that $(A)_{ih} > 0$ and $(A)_{hi} > 0$
- \bullet (i, h) and (h, j) are edges of G
- \bullet there exists a directed walk of length 2 from i to j

Directed walks and powers of the adjacency matrix

Let G be a weighted digraph with n nodes, with adjacency matrix A and binary adjacency matrix $A_{0,1} \in \{0,1\}^{n \times n}$. For all $i,j \in \{1,\ldots,n\}$ and $k > 1$

- $\mathbf{D} \,\, (A_{0,1}^k)_{ij}$ equals number of walks of length k from i to $j;$
- $\bm{2}$ $(A^{k})_{ij}>0$ if and only if there exists a walk of length k from i to $j.$

[The adjacency matrix](#page-3-0)

2 [Algebraic graph theory: graphs and adjacency matrices](#page-10-0)

3 [Graph theoretical characterization of special matrices](#page-23-0)

Useful concepts: block triangular matrices and partitions

• An $n \times n$ matrix A is block triangular if there exists r

$$
A = \begin{bmatrix} B_{r \times r} & C_{r \times (n-r)} \\ \hline 0_{(n-r) \times r} & D_{(n-r) \times (n-r)} \end{bmatrix}
$$
\n
$$
A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}
$$

• An $n \times n$ matrix A is block triangular if there exists r

$$
A = \begin{bmatrix} B_{r \times r} & C_{r \times (n-r)} \\ \hline 0_{(n-r) \times r} & D_{(n-r) \times (n-r)} \end{bmatrix}
$$
\n
$$
A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}
$$

• $\{1, J\}$ is a partition of the index set $\{1, \ldots, n\}$ if $\bigcup I \cup J = \{1, \ldots, n\}$ **2** $I \neq \emptyset$, $J \neq \emptyset$, \bigcirc $I \cap J = \emptyset$

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. The following are equivalent:

- \textbf{D} A is irreducible, that is, $\sum_{k=0}^{n-1}A^k>0;$
- **2** G is strongly connected;

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. The following are equivalent:

- \textbf{D} A is irreducible, that is, $\sum_{k=0}^{n-1}A^k>0;$
- **2** G is strongly connected;
- \bullet there exists no permutation matrix P such that PAP^{\top} is block triangular (alternative definition);

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with $n > 2$ nodes and with weighted adiacency matrix A. The following are equivalent:

- \textbf{D} A is irreducible, that is, $\sum_{k=0}^{n-1}A^k>0;$
- **2** G is strongly connected;
- \bullet there exists no permutation matrix P such that PAP^{\top} is block triangular (alternative definition);
- \bullet for all partitions $\{1, 1\}$ of the index set $\{1, \ldots, n\}$, there exists $i \in I$ and $j \in J$ such that (i, j) is a directed edge in G.

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. For any $j \in \{1, \ldots, n\}$, the following are equivalent:

- \bullet the *i*th node is globally reachable,
- $\boldsymbol{2}$ the j th column of $\sum_{k=0}^{n-1}A^k$ is positive.

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. For any $j \in \{1, \ldots, n\}$, the following are equivalent:

- \bullet the *i*th node is globally reachable,
- $\boldsymbol{2}$ the j th column of $\sum_{k=0}^{n-1}A^k$ is positive.

What if digraphs have self-loops at each node?

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. For any $j \in \{1, \ldots, n\}$, the following are equivalent:

- \bullet the *i*th node is globally reachable,
- $\bm{2}$ the j th column of $\sum_{k=0}^{n-1}A^k$ is positive.

What if digraphs have self-loops at each node?

Connectivity and positive powers of the adjacency matrix

Let G be a weighted digraph with $n \geq 2$ nodes, weighted adjacency matrix A, and a self-loop at each node. The following are equivalent:

- \bigcirc G is strongly connected,
- ∂ A^{n-1} is positive, that is, A is primitive.

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with $n \geq 2$ nodes and with weighted adjacency matrix A. For any $j \in \{1, \ldots, n\}$, the following are equivalent:

- \bullet the *i*th node is globally reachable,
- $\bm{2}$ the j th column of $\sum_{k=0}^{n-1}A^k$ is positive.

What if digraphs have self-loops at each node?

Connectivity and positive powers of the adjacency matrix

Let G be a weighted digraph with $n \geq 2$ nodes, weighted adjacency matrix A, and a self-loop at each node. The following are equivalent:

- \bigcirc G is strongly connected,
- ∂ A^{n-1} is positive, that is, A is primitive.
- For any $j \in \{1, \ldots, n\}$, the following statements are equivalent:
	- \bullet the *i*th node is globally reachable,
	- $\bm{2}$ the j th column of A^{n-1} is positive.

Characterization of primitive matrices

Strongly connected aperiodic digraphs and primitive adjacency matrices

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. The following are equivalent:

- **1 G** is strongly connected and aperiodic;
- $\mathbf 2$ A is primitive, that is, there exists $k\in\mathbb N$ such that A^k is positive.

Characterization of primitive matrices

Strongly connected aperiodic digraphs and primitive adjacency matrices

Let G be a weighted digraph with $n > 2$ nodes and with weighted adjacency matrix A. The following are equivalent:

- **1 G** is strongly connected and aperiodic;
- $\mathbf 2$ A is primitive, that is, there exists $k\in\mathbb N$ such that A^k is positive.

Proof sketch

Frobenius number

Given a finite set $A = \{a_1, a_2, \ldots, a_n\}$ of positive integers, an integer M is said to be representable by A if there exist non-negative integers $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ such that $M = \alpha_1 a_1 + \cdots + \alpha_n a_n$. The following statements are equivalent:

- **1** there exists a (finite) largest unrepresentable integer, called the Frobenius number of A,
- \bullet the greatest common divisor of A is 1 (coprime).

[The adjacency matrix](#page-3-0)

2 [Algebraic graph theory: graphs and adjacency matrices](#page-10-0)

3 [Graph theoretical characterization of special matrices](#page-23-0)

Bounds on the spectral radius of non-negative matrices, I

For a non-negative matrix $A\in \mathbb{R}_{\geq 0}^{n\times n}$, vector $x\in \mathbb{R}_{\geq 0}^n$, $x\neq \mathbb{0}_n$, and scalars $r_1, r_2 > 0$, the following statements hold:

- **1** if $r_1x \leq Ax$, then $r_1 \leq \rho(A)$,
- **2** if $Ax \le r_2x$ and $x \in \mathbb{R}_{>0}^n$, then $\rho(A) \le r_2$.

Moreover, for an irreducible matrix A,

1 if $r_1x \le Ax \le r_2x$, $r_1x \ne Ax \ne r_2x$, then $r_1 < \rho(A) < r_2$ and $x > 0$.

Bounds on the spectral radius of non-negative matrices, I

For a non-negative matrix $A\in \mathbb{R}_{\geq 0}^{n\times n}$, vector $x\in \mathbb{R}_{\geq 0}^n$, $x\neq \mathbb{0}_n$, and scalars $r_1, r_2 > 0$, the following statements hold:

- **1** if $r_1x \leq Ax$, then $r_1 \leq \rho(A)$,
- **2** if $Ax \le r_2x$ and $x \in \mathbb{R}_{>0}^n$, then $\rho(A) \le r_2$.

Moreover, for an irreducible matrix A,

1 if $r_1x \le Ax \le r_2x$, $r_1x \ne Ax \ne r_2x$, then $r_1 < \rho(A) < r_2$ and $x > 0$.

Monotonicity of spectral radius of non-negative matrices

Let A and A' be non-negative matrices in $\mathbb{R}_{\geq 0}^{n \times n}$. Then,

• if
$$
A \le A'
$$
, then $\rho(A) \le \rho(A')$,

 \bullet if additionally $A\neq A'$ and A' is irreducible, then $\rho(A)<\rho(A').$

Bounds on the spectral radius of non-negative matrices, II

For a non-negative matrix $A\in \mathbb{R}_{\geq 0}^{n\times n}$ with associated digraph G , the following statements hold:

1 min $(A\mathbb{1}_n) \leq \rho(A) \leq \max(A\mathbb{1}_n)$; and

2 if min $(A\mathbb{1}_n) < \max(A\mathbb{1}_n)$ then the following statements are equivalent:

- \blacksquare for each node i with $\mathbb{e}_i^\top A \mathbb{1}_n = \max(\underbrace{A \mathbb{1}_n}_n),$ there exists a directed walk in G from node *i* to a node *j* with $e_j^\top A \mathbb{1}_n < \max(A \mathbb{1}_n)$,
- $Q \rho(A) < \max(A\mathbb{1}_n)$.

Bounds on the spectral radius of non-negative matrices, II

For a non-negative matrix $A\in \mathbb{R}_{\geq 0}^{n\times n}$ with associated digraph G , the following statements hold:

- **1** min $(A\mathbb{1}_n) \leq \rho(A) \leq \max(A\mathbb{1}_n)$; and
- **2** if min $(A\mathbb{1}_n) < \max(A\mathbb{1}_n)$ then the following statements are equivalent:
	- \blacksquare for each node i with $\mathbb{e}_i^\top A \mathbb{1}_n = \max(\underbrace{A \mathbb{1}_n}_n),$ there exists a directed walk in G from node *i* to a node *j* with $e_j^\top A \mathbb{1}_n < \max(A \mathbb{1}_n)$,

$$
\bullet \ \rho(A) < \max(A\mathbb{1}_n).
$$

Row-substochastic matrix

A non-negative matrix $A \in \mathbb{R}^{n \times n}$ is row-substochastic if its row-sums are at most 1 and at least one row-sum is strictly less than 1, that is,

 $A\mathbb{1}_n \leq \mathbb{1}_n$, and there exists $i \in \{1, \ldots, n\}$ such that $e_i^\top A \mathbb{1}_n < 1$.

Row-substochastic matrix

A non-negative matrix $A \in \mathbb{R}^{n \times n}$ is row-substochastic if its row-sums are at most 1 and at least one row-sum is strictly less than 1, that is,

 $A\mathbb{1}_n \leq \mathbb{1}_n$, and there exists $i \in \{1, \ldots, n\}$ such that $e_i^\top A \mathbb{1}_n < 1$.

Convergent row-substochastic matrices

Let A be row-substochastic with associated digraph G.

- \bullet A is convergent if and only if G contains directed walks from each node with out-degree 1 to a node with out-degree less than 1,
- \bullet if A is irreducible, then A is convergent.

Upcoming

Week 1-6:

- **•** Introduction
- **•** Elements of matrix theory
- Elements of graph theory
- Elements of algebraic graph theory
- Discrete-time averaging systems
- The Laplacian matrix
- Continuous-time averaging systems
- Diffusively-coupled linear systems
- (*) The incidence matrix and its applications
- (*) Metzler matrices and dynamical flow systems

Week 7-14:

- Lyapunov stability theory
- Nonlienar averaging systems (Euler-Lagrangian, oscillators)
- Other advanced topics

Week 15-16:

• Project presentation

Algebraic graph theory (Lecture 4) **[AU7036](#page-0-0)** February 27, 2024 17 / 17