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@ Graphs and directed graphs

e Definitions, neighbors, degrees, subgraphs
@ Walks and connectivity in undirected graphs

o Walks, cycles, connected components, acyclicity, trees
@ Walks and connectivity in digraphs

Directed walks and cycles, sources/sinks, DAG, directed tree
Strong/weak connectivity, spanning tree, globally reachable node
Period, strongly connected components

Condensation digraph

o Weighted digraphs
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o The adjacency matrix
© Algebraic graph theory: graphs and adjacency matrices
e Graph theoretical characterization of special matrices

0 Elements of spectral graph theory



o The adjacency matrix



Weighted digraph and adjacency matrix

e Given a weighted digraph G = (V, E, {aec}ecE), the weighted
adjacency matrix A satisfies
° AU = a(i ) if (I,_j) cE
o Aj =0 otherwise

1 .2—|>‘

/‘7/‘7 / X 8.9

3.7

0 0
/.9 1.4 27 4A4> A=10 0 0 19 23
2.6—|>¢'2.3 0 0 0 0 0
44 44 0 0 27 44
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Weighted digraph and adjacency matrix

e Given a weighted digraph G = (V, E, {aec}ecE), the weighted
adjacency matrix A satisfies
° AU = a(i ) if (I,_j) cE
o Aj =0 otherwise

1 .2—|>‘

@ Given a weighted digraph G = (V, E, {ae}ecE), the binary adjacency
matrix A € {0,1}"*" satisfies

1, if (i,j)€E
a,-j—{’ if (i,)) € E,

0, otherwise.
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Weighted degrees

12 ‘ o 37 26 0 0

0 O
4A4> = 0 0 19 23
“_|> /x 0 0 0 0 ©
0 0 27 44
@ Given a weighted digraph G and adJacency matrix A

o Weighted out-degree matrix

dout(1) O 0
Doy = diag(Al,) = 0 0

o Weighted in-degree matrix

dn(1) 0 0
Dn=diag(A"1,)=1| o . o
0 0 dn(n)
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Adjacency matrix: examples

kG =
ol e

a) P5 b) Cﬁ (C) 56

000000

@ These are undirected graphs
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Adjacency matrix: examples

kG =
ol e

a) P5 b) Cﬁ (C) 56

000000

@ These are undirected graphs

@ Why do the patterns look so “pretty”?
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Useful concepts: permutation matrices

@ A permutation matrix is a square binary matrix with precisely one 1 in

every row and column

1 00 010 0 01
P=1{0 10 P=1{0 0 1 P=1{0 1 0
0 01 1 00 1 00
o P71=pPT
e PTAP is a similarity transformation and reorder rows and columns of A
0 01 ail dr2 a3 axn ax3 an
P=11 0 O A= dp1 dp2 a3 PTAP = |[a32 a33 asi
0 10 331 ax  as3 ax a3 an
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© Algebraic graph theory: graphs and adjacency matrices



Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"
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Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"
o G is weight-balanced «— Al,=A"1,
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Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"

o G is weight-balanced «— Al,=A"1,

@ (no self-loop) node i is a sink <= (Al,); =0
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Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"

o G is weight-balanced «— Al,=A"1,
@ (no self-loop) node i is a sink <= (Al,); =0

o (no self-loop) node i is a source <= (AT1,); =0
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Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"
o G is weight-balanced «— Al,=A"1,
@ (no self-loop) node i is a sink <— (A1,); =0
o (no self-loop) node i is a source <= (A'1,); =0

@ Each node has weighted out-degree 1 <= A is row-stochastic
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Basic results

Let G be a graph and A be the associated adjacency matrix
o G is undirected «—= A=A"
o G is weight-balanced «— Al,=A"1,
@ (no self-loop) node i is a sink <= (Al,); =0
o (no self-loop) node i is a source <= (A'1,); =0
@ Each node has weighted out-degree 1 <= A is row-stochastic

@ Each node has weighted out- and in-degree 1 <— A'is
doubly-stochastic
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Matrix powers and directed walks

Let A be an adjacency matrix
e We first note (obviously) A;; > 0 if and only if
e (i,j) is an edge of G
o there exists a directed walk of length 1 from / to j
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Matrix powers and directed walks

Let A be an adjacency matrix
e We first note (obviously) A;; > 0 if and only if
e (i,j) is an edge of G
o there exists a directed walk of length 1 from / to j

@ We then note that

(A?);; = (ith row of A) - (jth column of A) = Zn:(A),-,,(A),,j
h=1
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Matrix powers and directed walks

Let A be an adjacency matrix
e We first note (obviously) A;; > 0 if and only if
e (i,j) is an edge of G
o there exists a directed walk of length 1 from / to j

@ We then note that

(A?);; = (ith row of A) - (jth column of A) = Zn:(A),-,,(A),,j
h=1

This implies (A%);; > 0 if and only if
o there exists a node h such that (A)j, > 0 and (A)y >0
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Matrix powers and directed walks

Let A be an adjacency matrix
e We first note (obviously) A;; > 0 if and only if
e (i,j) is an edge of G
o there exists a directed walk of length 1 from / to j

@ We then note that

(A?);; = (ith row of A) - (jth column of A) = Zn:(A),-,,(A),,j
h=1

This implies (A%);; > 0 if and only if
o there exists a node h such that (A)j, > 0 and (A)y >0
e (i, h) and (h,j) are edges of G
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Matrix powers and directed walks

Let A be an adjacency matrix

e We first note (obviously) A;; > 0 if and only if

e (i,j) is an edge of G

o there exists a directed walk of length 1 from / to j
@ We then note that

n
(A%);; = (ith row of A)- (jth column of A) =) "(A)i(A)s
h=1

This implies (A%);; > 0 if and only if
o there exists a node h such that (A)j, > 0 and (A)y >0
e (i, h) and (h,j) are edges of G
o there exists a directed walk of length 2 from / to j
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Matrix powers and directed walks

Directed walks and powers of the adjacency matrix

Let G be a weighted digraph with n nodes, with adjacency matrix A and
binary adjacency matrix Ag1 € {0,1}"". For all i,j € {1,...,n} and
k>1

© (Ag1)i equals number of walks of length k from i to j;

® (AX); > 0 if and only if there exists a walk of length k from i to j.

o
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© Graph theoretical characterization of special matrices



Useful concepts: block triangular matrices and partitions

@ An n x n matrix A is block triangular if there exists r

A— Brxr ‘ Cr><(n—r)
0(n—r)><r ‘ D(n—r)x(n—r)
1 01 1 01 1 01
A=10 1 1 A=11 11 A=1(1 11
0 01 0 01 011
Algebraic graph theory (Lecture 4) AU7036

February 27, 2024 10 / 17



Useful concepts: block triangular matrices and partitions

@ An n x n matrix A is block triangular if there exists r

A= Brxr ‘ Cr><(n—r)
0(n—r)><r ‘ D(n—r)x(n—r)
1 01 1 01 1 01
A=10 1 1 A=11 11 A=11 11
0 01 0 01 011

e {/,J} is a partition of the index set {1,...,n} if

®/uJ={1,...,n
A £0 JA0,
®/nJ=0
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Characterization of irreducible matrices

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. The following are equivalent:

.. . . —1
© A s irreducible, that is, >}~ Ak > 0:
® G is strongly connected,;
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Characterization of irreducible matrices

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. The following are equivalent:

.. . . —1
© A s irreducible, that is, >}~ Ak > 0:
® G is strongly connected,;

© there exists no permutation matrix P such that PAPT is block
triangular (alternative definition);
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Characterization of irreducible matrices

Strongly connected digraphs and irreducible adjacency matrices

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. The following are equivalent:

oo 5 - n—1 k i
© Ais irreducible, that is, >/~ 5 A* > 0;
® G is strongly connected,;
© there exists no permutation matrix P such that PAPT is block
triangular (alternative definition);

O for all partitions {/, J} of the index set {1,..., n}, there exists i € /
and j € J such that (i, /) is a directed edge in G.
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Global reachability and adjacency matrix

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. For any j € {1,....n}, the following are equivalent:

@ the jth node is globally reachable,
@ the jth column of >27_8 A is positive.
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Global reachability and adjacency matrix

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. For any j € {1,....n}, the following are equivalent:

@ the jth node is globally reachable,
@ the jth column of >27_8 A is positive.

What if digraphs have self-loops at each node?
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Global reachability and adjacency matrix

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. For any j € {1,....n}, the following are equivalent:

@ the jth node is globally reachable,
® the jth column of Zz;é AK is positive.

What if digraphs have self-loops at each node?

Connectivity and positive powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes, weighted adjacency matrix
A, and a self-loop at each node. The following are equivalent:

@ G is strongly connected,
® AL is positive, that is, A is primitive.
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Global reachability and adjacency matrix

Global reachability and powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. For any j € {1,....n}, the following are equivalent:

@ the jth node is globally reachable,
® the jth column of Zz;é AK is positive.

What if digraphs have self-loops at each node?

Connectivity and positive powers of the adjacency matrix

Let G be a weighted digraph with n > 2 nodes, weighted adjacency matrix
A, and a self-loop at each node. The following are equivalent:

@ G is strongly connected,
® AL is positive, that is, A is primitive.
For any j € {1,....n}, the following statements are equivalent:
@ the jth node is globally reachable,
® the jth column of A"~ is positive.
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Characterization of primitive matrices

Strongly connected aperiodic digraphs and primitive adjacency matrices

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. The following are equivalent:

@ G is strongly connected and aperiodic;
® A is primitive, that is, there exists k € N such that A¥ is positive.
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Characterization of primitive matrices

Strongly connected aperiodic digraphs and primitive adjacency matrices

Let G be a weighted digraph with n > 2 nodes and with weighted
adjacency matrix A. The following are equivalent:

@ G is strongly connected and aperiodic;

® A is primitive, that is, there exists k € N such that Ak s positive.

Proof sketch

Frobenius number

Given a finite set A= {a1,ap,...,an} of positive integers, an integer M is
said to be representable by A if there exist non-negative integers
{a1,ag,...,a,} such that M = aja; + - - - + apa,. The following

statements are equivalent:

@ there exists a (finite) largest unrepresentable integer, called the
Frobenius number of A,

@ the greatest common divisor of A is 1 (coprime).
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e Elements of spectral graph theory



Bounds on spectral radius |
Bounds on the spectral radius of non-negative matrices, |

For a non-negative matrix A € R%", vector x € R’io, x # 0,, and scalars

ri, r» > 0, the following statements hold:

@ if nx < Ax, then 1 < p(A),

® if Ax < rx and x € RZ, then p(A) < .
Moreover, for an irreducible matrix A,

O if nx < Ax < nx, nx # Ax # nx, then n < p(A) < r, and x > 0.

v
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Bounds on spectral radius |

Bounds on the spectral radius of non-negative matrices, |

For a non-negative matrix A € R%", vector x € Rgo, x # 0,, and scalars

r, r» > 0, the following statements hold:

@ if nx < Ax, then n < p(A),

® if Ax < rx and x € RZ, then p(A) < .
Moreover, for an irreducible matrix A,

@ if nx < Ax < mx, nx # Ax # nx, then n < p(A) < r; and x > 0.

Monotonicity of spectral radius of non-negative matrices

Let A and A’ be non-negative matrices in R%". Then,
O if A< A, then p(A) < p(A),
@ if additionally A # A" and A’ is irreducible, then p(A) < p(A").
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Bounds on spectral radius |l
Bounds on the spectral radius of non-negative matrices, |l

For a non-negative matrix A € RZj" with associated digraph G, the
following statements hold: -
® min(Al,) < p(A) < max(Al,); and
® if min(Al,) < max(Al,) then the following statements are
equivalent:

@ for each node i with e A1, = max(AL,), there exists a directed walk
in G from node i to a node j with e/ A1, < max(Al,),
D p(A) < max(Al,).
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Bounds on spectral radius |l

Bounds on the spectral radius of non-negative matrices, |l

For a non-negative matrix A € RZj" with associated digraph G, the
following statements hold: -
® min(Al,) < p(A) < max(Al,); and
® if min(Al,) < max(Al,) then the following statements are
equivalent:

@ for each node i with e A1, = max(A1,), there exists a directed walk
in G from node i to a node j with e/ A1, < max(Al,),
D p(A) < max(Al,).

(a) Complete bipartite graph (b) Grid graph
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Row-substochastic matrix and their spectral radius

Row-substochastic matrix

A non-negative matrix A € R"*" is row-substochastic if its row-sums are
at most 1 and at least one row-sum is strictly less than 1, that is,

Al, < 1,, and there exists i € {1,...,n} such that e,-TAl,, < 1.
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Row-substochastic matrix and their spectral radius

Row-substochastic matrix

A non-negative matrix A € R"*" is row-substochastic if its row-sums are
at most 1 and at least one row-sum is strictly less than 1, that is,

Al, < 1,, and there exists i € {1,...,n} such that e] A1, < 1.

Convergent row-substochastic matrices
Let A be row-substochastic with associated digraph G.

@ A is convergent if and only if G contains directed walks from each
node with out-degree 1 to a node with out-degree less than 1,

@® if Ais irreducible, then A is convergent.
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Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems
Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory
Nonlienar averaging systems (Euler-Lagrangian, oscillators)
Other advanced topics

Week 15-16:

Project presentation
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