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@ The adjacency matrix
@ Graph and adjacency matrix
o Matrix power and directed walks in graphs
@ Graph theoretical characterization of matrices
e Strong connectivity <= irreducibility
e Strong connectivity + aperiodicity <= primitivity
@ Spectral graph theory

e Monotonicity of spectral radius
o Convergence of substochastic matrices
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© Averaging systems achieving asymptotic consensus
© Averaging systems achieving asymptotic disagreement
© Consensus via disagreement and Lyapunov functions

@ Design of graph weights



@ Averaging systems achieving asymptotic consensus



Asymptotic consensus: example 1
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@ We know that

lim Ak =1,w’

k—o00

where w = [1/6,1/3,1/4,1/4]T is the left dominant eigenvector of A
@ State achieves consensus:
w ' x(0)
lim x(k) = lim Akx(0) = (14w ")x(0) = (w'x(0))14 = :
k—o0

k—o0

w T x(0)
Average consensus is not achieved.
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Asymptotic consensus: example 2
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@ A is primitive
@ A is doubly stochastic, i.e., its left dominant eigenvector w = %1,,

@ State achieves average consensus

lim x(k) = lim A*x(0) = average(x(0))1,

k—o0 k—o0
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Asymptotic consensus: example 3
1122 {2)005

@ Associated averaging system

Xl(k + 1) = Xl(k)
xa(k 4+ 1) = 0.5x1(x) + 0.5x2(k)
or in matrix form

x(k+1) = [0%5 0(.)5] x(k)

@ State achieves consensus

lim x(k) = lim A*x(0) = x;(0)1,

k—o0 k—o0

Primitivity (even strong connectivity) is not necessary for consensus.
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Consensus for discrete-time averaging systems

Equivalent characterizations for consensus
Let A be a row-stochastic matrix and let G be its associated digraph. The

following statements are equivalent:
(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;
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Consensus for discrete-time averaging systems

Equivalent characterizations for consensus
Let A be a row-stochastic matrix and let G be its associated digraph. The

following statements are equivalent:
(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;

(A2) A is semi-convergent and

lim Ak =1,w’
k—o00

where w >0, wA=w' and w'1l, =1;
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Consensus for discrete-time averaging systems

Equivalent characterizations for consensus

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;
(A2) A is semi-convergent and

lim Ak =1,w’
k—o00

where w >0, wA=w' and w'1l, =1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

A is called indecomposable if any of the above holds
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Consensus for discrete-time averaging systems

Row-stochastic matrices with a globally-reachable aperiodic SCC
Let A be a row-stochastic matrix and let G be its associated digraph. If
any of (A1)-(A3) holds (or A is indecomposable), then

@ left dominant eigenvector w > 0, w; > 0 iff i is globally reachable;
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Consensus for discrete-time averaging systems

Row-stochastic matrices with a globally-reachable aperiodic SCC
Let A be a row-stochastic matrix and let G be its associated digraph. If
any of (A1)-(A3) holds (or A is indecomposable), then
@ left dominant eigenvector w > 0, w; > 0 iff i is globally reachable;
@® the solution to the averaging model x(k + 1) = Ax(k) satisfies
lim x(k) = (WTX(O))ln;

k—00
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Consensus for discrete-time averaging systems

Row-stochastic matrices with a globally-reachable aperiodic SCC
Let A be a row-stochastic matrix and let G be its associated digraph. If
any of (A1)-(A3) holds (or A is indecomposable), then
@ left dominant eigenvector w > 0, w; > 0 iff i is globally reachable;
@® the solution to the averaging model x(k + 1) = Ax(k) satisfies
lim x(k) = (WTX(O))ln;

k—00

© if additionally A is doubly-stochastic, then w = %1,, and

lim x(k) = 11),(7(0) 1, = average(x(0))1,.

k— 00
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© Averaging systems achieving asymptotic disagreement



Graph condensation with multiple sinks

@ There are two sinks in the condensation graph

@ No "information exchange” between these sinks
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Disagreement for discrete-time averaging systems

Equivalent characterizations for disagreement

Let A be a row-stochastic matrix, G be its associated digraph, and ns > 2

be the number of sinks in the condensation digraph C(G). The following

statements are equivalent:

(A1) the eigenvalue 1 is semisimple with multiplicity ns and all other
eigenvalues p satisfy |u| < 1;
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Disagreement for discrete-time averaging systems

Equivalent characterizations for disagreement

Let A be a row-stochastic matrix, G be its associated digraph, and ns > 2

be the number of sinks in the condensation digraph C(G). The following

statements are equivalent:

(A1) the eigenvalue 1 is semisimple with multiplicity ns and all other
eigenvalues p satisfy |u| < 1;

(A2) A is semi-convergent;
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Disagreement for discrete-time averaging systems

Equivalent characterizations for disagreement

Let A be a row-stochastic matrix, G be its associated digraph, and ns > 2

be the number of sinks in the condensation digraph C(G). The following

statements are equivalent:

(A1) the eigenvalue 1 is semisimple with multiplicity ns and all other
eigenvalues p satisfy |u| < 1;

(A2) A is semi-convergent;

(A3) each sink of C(G), regarded as a subgraph of G, is aperiodic.
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Disagreement for discrete-time averaging systems

Row-stochastic matrices with multiple aperiodic sinks

Let A be a row-stochastic matrix, G be its associated digraph, and ng > 2
be the number of sinks in the condensation digraph C(G). If any of
(A1)-(A3) holds, then
@ left dominant eigenvectors wP € R”, p € {1,...,ns} of A can be
selected to satisfy: wP >0, 1) wP = 1 and w? > 0 iff node i belongs
to sink p;
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Disagreement for discrete-time averaging systems

Row-stochastic matrices with multiple aperiodic sinks

Let A be a row-stochastic matrix, G be its associated digraph, and ng > 2
be the number of sinks in the condensation digraph C(G). If any of
(A1)-(A3) holds, then
@ left dominant eigenvectors wP € R”, p € {1,...,ns} of A can be
selected to satisfy: wP >0, 1) wP = 1 and w? > 0 iff node i belongs
to sink p;

@ the solution to the averaging model x(k + 1) = Ax(k) satisfies

(W”)T (0), if node i belongs to sink p,
I|m xi( .
fooes Zz, p Wp x(0)), otherwise
where z; ,, p € {1,...,ns}, are convex combination coefficients and

zi p > 0 iff there exists a directed walk from node i to the sink p.
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© Consensus via disagreement and Lyapunov functions



Disagreement and deflated matrices

For the averaging system

x(k 4+ 1) = Ax(k)

@ “Suppose” we know that x(k) koo, (w'x(0))1,

e We can define the disagreement vector d(k) as follows
3(K) = x(k) = (w ' x(0))1,

@ The disagreement vector satisfies
S(k+1)=(A—1w")d(k)

where A — 1w is called deflated matrix
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Convergence of disagreement vector

S(k+1) = (A—1w")d(k)

Convergence of disagreement vector
Given row-stochastic matrix A with left dominant eigenvector w,
1w =1,
@ if A is primitive, then the deflated matrix A — 1w has the same
eigenvalues and eigenvectors of A, except the eigenvalue 1 which is
replaced by 0 (with same right and left eigenvectors);

Averaging systems (Lecture 5) AU7036 March 8, 2024 12 /20



Convergence of disagreement vector

S(k+1) = (A—1w")d(k)

Convergence of disagreement vector
Given row-stochastic matrix A with left dominant eigenvector w,
1w =1,

@ if A is primitive, then the deflated matrix A — 1w has the same

eigenvalues and eigenvectors of A, except the eigenvalue 1 which is
replaced by 0 (with same right and left eigenvectors);

o if Ais primitive, then

p(A—1w') <1

The disagreement vector may not vanish monotonically.
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Quadratic disagreement

@ Define the quadratic disagreement function Vo4 : R” — R by

Vaa(x) = Z Z _XJ

i=1 j=i+1

where Vgq4(x) > 0 and Vqq(x) = 0 iff x is a consensus vector

Averaging systems (Lecture 5) AU7036 March 8, 2024 13 /20



Quadratic disagreement

@ Define the quadratic disagreement function Vo4 : R” — R by
Vaa () = Z > ()
i=1 j=i+1

where Vgq4(x) > 0 and Vqq(x) = 0 iff x is a consensus vector

@ Vq4(x) can be written in standard quadratic form as

1
Vaa(x) = x" (I, — ;1n1§)x
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Quadratic disagreement

@ Define the quadratic disagreement function Vo4 : R” — R by
Vaa () = Z > ()
i=1 j=i+1

where Vgq4(x) > 0 and Vqq(x) = 0 iff x is a consensus vector

@ Vq4(x) can be written in standard quadratic form as

1
Vaa(x) = x" (I, — ;1n1§)x

@ For symmetric row-stochastic matrix A = A", define 2-coefficient of
ergodicity by

1
(A =|A-=1,1 |, = max Aylla
2(A) = || 1n nll ||y||2:1,yJ_1n|| y||
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Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = AT with associated graph G,

@ for all x e R”
Vad (Ax) < (12(A))? Vaa(x)

@ if G is connected, 7(A) < 1,
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Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = AT with associated graph G,

@ for all x e R”
Vaa(Ax) < (72(A))?Vaa(x)
@ if G is connected, 7(A) < 1,
© if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vad(x(k)) < 72(A)*Voa(x(0)), for all k € N.
~——"

<1
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Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = AT with associated graph G,

@ for all x e R”
Vaa(Ax) < (72(A))?Vaa(x)
@ if G is connected, 7(A) < 1,
© if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vad(x(k)) < 72(A)*Voa(x(0)), for all k € N.
~——"

<1

The quadratic disagreement diminishes monotonically (Lyapunov function).
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Max-min disagreement

@ Define the max-min disagreement function Vinaxmin : R” — R by

Vimax-min(X) = max x;— min x;= max (X — X;)
ie{1,...,n} ie{1,...,n} ije{l1,...,n}

where Viaxmin(x) > 0 and Viax-min(x) = 0 iff x is a consensus vector
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Max-min disagreement

@ Define the max-min disagreement function Vinaxmin : R” — R by

Vimax-min(X) = max x;— min x;= max (X — X;)
ie{1,...,n} ie{1,...,n} ije{l1,...,n}

where Viaxmin(x) > 0 and Viax-min(x) = 0 iff x is a consensus vector

@ For row-stochastic matrix A, define 1-coefficient of ergodicity by

T1(A) = max ATy 1
(A) = lylli=1,yL11, | |

R Za .
2 ije{l,.. n} ‘ i Jh’

=1- o min Z min{a,-h,ajh}.
h=1

ije{l,...,n}
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Convergence of max-min disagreement

Convergence of max-min disagreement

Given a row-stochastic matrix A with associated graph G,
@ for all x € R"”
Vmax-min(AX) < 7_2(A) Vmax-min(x)

® 71(A) < 1iff Ais scrambling, i.e., any two nodes have a common
out-neighbor;
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Convergence of max-min disagreement

Convergence of max-min disagreement
Given a row-stochastic matrix A with associated graph G,
@ for all x € R"”
Vinax-min(Ax) < 72(A) Vinax-min (X)
® 71(A) < 1iff Ais scrambling, i.e., any two nodes have a common
out-neighbor;

© if G contains a globally reachable node in h steps, A" is scrambling

Vinasxemin(X(k)) < (T1(AM) X7V semin(x(0)),  for all k € N.
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Convergence of max-min disagreement

Convergence of max-min disagreement
Given a row-stochastic matrix A with associated graph G,
@ for all x € R"”
Vinax-min(Ax) < 72(A) Vinax-min (X)
® 71(A) < 1iff Ais scrambling, i.e., any two nodes have a common
out-neighbor;

© if G contains a globally reachable node in h steps, A" is scrambling

Vinasxemin(X(k)) < (T1(AM) X7V semin(x(0)),  for all k € N.

The max-min disagreement diminishes monotonically (Lyapunov function).
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@ Design of graph weights



The equal-neighbor model

0100 1 000
1 011 0 300
A= 0101 b= 0020
0110 0 0 0 2

@ Let G be a connected undirected graph, the equal-neighbor model:
Aequal—nghbr = D_lA

D = diag(di,...,ds) and A are degree and 0-1 adjacency matrices

@ The left dominant eigenvector is
d
1|

Wequal-nghbr = :
anernensr 27:1 d’ d
n
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Averaging in wireless sensor networks

‘/? 12;?/3
1/4 1/4
é)(%/
1/2—""

Awsn =

O O BIFNI=
WHW[ A =N =
WIFWIRSIR O
WFWIRA R O

@ The update matrix can be written as
Awsn = (D + 1) "H(A+ Iy)
@ The left dominant eigenvector is
d+1

m e — :
wsn n—+ 27:1 d; d Jr 1
n
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The Metropolis—Hastings model

/12
31 S
7 2 0 0
11 1 1 729
AMH = |4 ‘1‘ g ‘{ 3/4
0 % ? g l/-l\
07 3 » ED i@g
@ Let G be undirected graph, the Metropolis—Hastings model:
1
S e E oo
1+ max{d;, d;}’ if {i,j} € Eandi#j,
(Ami)i = 4 1 - > (Awn)ins if i =],
{i,h}€E h#i
0, otherwise.

\
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The Metropolis—Hastings model

AMH =

O O hI-pW
ENTEEN NN
wiEG|owsim ©

e
AR

Rlowikai- ©

@ Let G be undirected graph, the Metropolis—Hastings model:

1
1+ max{d;, d;}’
(Avr)i = 1 - > (Awn)ins
{i,h}€E h#i
0,

\

if {i,j} € Eandi#j,
if i = j,

otherwise.

Properties of AuH

O Aun = Auy
@ AmH is primitive iff G is connected
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Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems
Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory
Nonlienar averaging systems (Euler-Lagrangian, oscillators)
Other advanced topics

Week 15-16:

Project presentation
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