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Asymptotic consensus: example 1
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We know that
lim
k→∞

Ak = 1nw
⊤

where w = [1/6, 1/3, 1/4, 1/4]⊤ is the left dominant eigenvector of A

State achieves consensus:

lim
k→∞

x(k) = lim
k→∞

Akx(0) = (14w
⊤)x(0) = (w⊤x(0))14 =

w
⊤x(0)
...

w⊤x(0)


Average consensus is not achieved.
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Asymptotic consensus: example 2
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
A is primitive

A is doubly stochastic, i.e., its left dominant eigenvector w = 1
61n

State achieves average consensus

lim
k→∞

x(k) = lim
k→∞

Akx(0) = average
(
x(0)

)
1n
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Asymptotic consensus: example 3

1 2
0.5

1 0.5

Associated averaging system

x1(k + 1) = x1(k)

x2(k + 1) = 0.5x1(x) + 0.5x2(k)

or in matrix form

x(k + 1) =

[
1 0
0.5 0.5

]
x(k)

State achieves consensus

lim
k→∞

x(k) = lim
k→∞

Akx(0) = x1(0)1n

Primitivity (even strong connectivity) is not necessary for consensus.
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Consensus for discrete-time averaging systems

Equivalent characterizations for consensus

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent and

lim
k→∞

Ak = 1nw
⊤

where w ≥ 0, w⊤A = w⊤ and w⊤1n = 1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

A is called indecomposable if any of the above holds
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Consensus for discrete-time averaging systems

Row-stochastic matrices with a globally-reachable aperiodic SCC

Let A be a row-stochastic matrix and let G be its associated digraph. If
any of (A1)-(A3) holds (or A is indecomposable), then

1 left dominant eigenvector w ≥ 0, wi > 0 iff i is globally reachable;

2 the solution to the averaging model x(k + 1) = Ax(k) satisfies

lim
k→∞

x(k) =
(
w⊤x(0)

)
1n;

3 if additionally A is doubly-stochastic, then w = 1
n1n and

lim
k→∞

x(k) =
1⊤
n x(0)

n
1n = average

(
x(0)

)
1n.
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Graph condensation with multiple sinks
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sink 2
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sink 1
<latexit sha1_base64="JzBS2PvU9j/aV9YXi5WhOxkrr/k=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGxInc0akdiY4mJByZwIXvLHqzsx2V3z4Rc+A82Fmps/UF2/hsXuELBl0zy8t5MZubFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaEgUV/ohxoZyJmlomeX0IdUUi5jTbjy5mfvdJ6oNU/LeTlMaCTySLGEEWyd1DJMTFAyqdb/hL4DWSVCQOhRoD6pf/aEimaDSEo6N6QV+aqMca8sIp7NKPzM0xWSCR7TnqMSCmihfXDtD504ZokRpV9Kihfp7IsfCmKmIXafAdmxWvbn4n9fLbHIV5UymmaWSLBclGUdWofnraMg0JZZPHcFEM3crImOsMbEuoIoLIVh9eZ2EzcZ1w79r1lu1Io0ynEENLiCAS2jBLbQhBAKP8Ayv8OYp78V79z6WrSWvmDmFP/A+fwBiio5t</latexit><latexit sha1_base64="JzBS2PvU9j/aV9YXi5WhOxkrr/k=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGxInc0akdiY4mJByZwIXvLHqzsx2V3z4Rc+A82Fmps/UF2/hsXuELBl0zy8t5MZubFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaEgUV/ohxoZyJmlomeX0IdUUi5jTbjy5mfvdJ6oNU/LeTlMaCTySLGEEWyd1DJMTFAyqdb/hL4DWSVCQOhRoD6pf/aEimaDSEo6N6QV+aqMca8sIp7NKPzM0xWSCR7TnqMSCmihfXDtD504ZokRpV9Kihfp7IsfCmKmIXafAdmxWvbn4n9fLbHIV5UymmaWSLBclGUdWofnraMg0JZZPHcFEM3crImOsMbEuoIoLIVh9eZ2EzcZ1w79r1lu1Io0ynEENLiCAS2jBLbQhBAKP8Ayv8OYp78V79z6WrSWvmDmFP/A+fwBiio5t</latexit><latexit sha1_base64="JzBS2PvU9j/aV9YXi5WhOxkrr/k=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGxInc0akdiY4mJByZwIXvLHqzsx2V3z4Rc+A82Fmps/UF2/hsXuELBl0zy8t5MZubFKWfG+v63V9rY3NreKe9W9vYPDo+qxycdozJNaEgUV/ohxoZyJmlomeX0IdUUi5jTbjy5mfvdJ6oNU/LeTlMaCTySLGEEWyd1DJMTFAyqdb/hL4DWSVCQOhRoD6pf/aEimaDSEo6N6QV+aqMca8sIp7NKPzM0xWSCR7TnqMSCmihfXDtD504ZokRpV9Kihfp7IsfCmKmIXafAdmxWvbn4n9fLbHIV5UymmaWSLBclGUdWofnraMg0JZZPHcFEM3crImOsMbEuoIoLIVh9eZ2EzcZ1w79r1lu1Io0ynEENLiCAS2jBLbQhBAKP8Ayv8OYp78V79z6WrSWvmDmFP/A+fwBiio5t</latexit>

There are two sinks in the condensation graph

No ”information exchange” between these sinks
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Disagreement for discrete-time averaging systems

Equivalent characterizations for disagreement

Let A be a row-stochastic matrix, G be its associated digraph, and ns ≥ 2
be the number of sinks in the condensation digraph C (G ). The following
statements are equivalent:

(A1) the eigenvalue 1 is semisimple with multiplicity ns and all other
eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent;

(A3) each sink of C (G ), regarded as a subgraph of G , is aperiodic.
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Disagreement for discrete-time averaging systems

Row-stochastic matrices with multiple aperiodic sinks

Let A be a row-stochastic matrix, G be its associated digraph, and ns ≥ 2
be the number of sinks in the condensation digraph C (G ). If any of
(A1)-(A3) holds, then

1 left dominant eigenvectors wp ∈ Rn, p ∈ {1, . . . , ns} of A can be
selected to satisfy: wp ≥ 0, 1⊤

n w
p = 1 and wp

i > 0 iff node i belongs
to sink p;

2 the solution to the averaging model x(k + 1) = Ax(k) satisfies

lim
k→∞

xi (k) =


(wp)⊤x(0), if node i belongs to sink p,
ns∑
p=1

zi ,p
(
(wp)⊤x(0)

)
, otherwise

where zi ,p, p ∈ {1, . . . , ns}, are convex combination coefficients and
zi ,p > 0 iff there exists a directed walk from node i to the sink p.
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Disagreement and deflated matrices

For the averaging system

x(k + 1) = Ax(k)

“Suppose” we know that x(k)
k→∞−−−→ (w⊤x(0))1n

We can define the disagreement vector δ(k) as follows

δ(k) = x(k)− (w⊤x(0))1n

The disagreement vector satisfies

δ(k + 1) = (A− 1w⊤)δ(k)

where A− 1w⊤ is called deflated matrix
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Convergence of disagreement vector

δ(k + 1) = (A− 1w⊤)δ(k)

Convergence of disagreement vector

Given row-stochastic matrix A with left dominant eigenvector w ,
1⊤w = 1,

if A is primitive, then the deflated matrix A− 1w⊤ has the same
eigenvalues and eigenvectors of A, except the eigenvalue 1 which is
replaced by 0 (with same right and left eigenvectors);

if A is primitive, then
ρ(A− 1w⊤) < 1

The disagreement vector may not vanish monotonically.
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Quadratic disagreement

Define the quadratic disagreement function Vqd : Rn → R by

Vqd(x) =
1

n

n∑
i=1

n∑
j=i+1

(xi − xj)
2

where Vqd(x) ≥ 0 and Vqd(x) = 0 iff x is a consensus vector

Vqd(x) can be written in standard quadratic form as

Vqd(x) = x⊤(In −
1

n
1n1⊤

n )x

For symmetric row-stochastic matrix A = A⊤, define 2-coefficient of
ergodicity by

τ2(A) = ∥A− 1

n
1n1⊤

n ∥2 = max
∥y∥2=1,y⊥1n

∥Ay∥2
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Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = A⊤ with associated graph G ,

1 for all x ∈ Rn

Vqd(Ax) ≤ (τ2(A))
2Vqd(x)

2 if G is connected, τ2(A) < 1;

3 if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vqd(x(k)) ≤ τ2(A)︸ ︷︷ ︸
<1

2kVqd(x(0)), for all k ∈ N.

The quadratic disagreement diminishes monotonically (Lyapunov function).

Averaging systems (Lecture 5) AU7036 March 8, 2024 14 / 20



Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = A⊤ with associated graph G ,

1 for all x ∈ Rn

Vqd(Ax) ≤ (τ2(A))
2Vqd(x)

2 if G is connected, τ2(A) < 1;

3 if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vqd(x(k)) ≤ τ2(A)︸ ︷︷ ︸
<1

2kVqd(x(0)), for all k ∈ N.

The quadratic disagreement diminishes monotonically (Lyapunov function).

Averaging systems (Lecture 5) AU7036 March 8, 2024 14 / 20



Convergence of quadratic disagreement

Convergence of quadratic disagreement

Given symmetric row-stochastic matrix A = A⊤ with associated graph G ,

1 for all x ∈ Rn

Vqd(Ax) ≤ (τ2(A))
2Vqd(x)

2 if G is connected, τ2(A) < 1;

3 if G is connected, then any solution to x(k + 1) = Ax(k) satisfies

Vqd(x(k)) ≤ τ2(A)︸ ︷︷ ︸
<1

2kVqd(x(0)), for all k ∈ N.

The quadratic disagreement diminishes monotonically (Lyapunov function).

Averaging systems (Lecture 5) AU7036 March 8, 2024 14 / 20



Max-min disagreement

Define the max-min disagreement function Vmax-min : Rn → R by

Vmax-min(x) = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi = max
i ,j∈{1,...,n}

(xi − xj)

where Vmax-min(x) ≥ 0 and Vmax-min(x) = 0 iff x is a consensus vector

For row-stochastic matrix A, define 1-coefficient of ergodicity by

τ1(A) = max
∥y∥1=1,y⊥1n

∥A⊤y∥1

=
1

2
max

i ,j∈{1,...,n}

n∑
h=1

|aih − ajh|

= 1− min
i ,j∈{1,...,n}

n∑
h=1

min{aih, ajh}.
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∥y∥1=1,y⊥1n

∥A⊤y∥1

=
1

2
max

i ,j∈{1,...,n}

n∑
h=1

|aih − ajh|

= 1− min
i ,j∈{1,...,n}

n∑
h=1

min{aih, ajh}.
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Convergence of max-min disagreement

Convergence of max-min disagreement

Given a row-stochastic matrix A with associated graph G ,

1 for all x ∈ Rn

Vmax-min(Ax) ≤ τ2(A)Vmax-min(x)

2 τ1(A) < 1 iff A is scrambling, i.e., any two nodes have a common
out-neighbor;

3 if G contains a globally reachable node in h steps, Ah is scrambling

Vmax-min(x(k)) ≤ (τ1(A
h))⌊k/h⌋Vmax-min(x(0)), for all k ∈ N.

The max-min disagreement diminishes monotonically (Lyapunov function).
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Today

1 Averaging systems achieving asymptotic consensus

2 Averaging systems achieving asymptotic disagreement

3 Consensus via disagreement and Lyapunov functions

4 Design of graph weights



The equal-neighbor model

A =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 D =


1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


Let G be a connected undirected graph, the equal-neighbor model:

Aequal-nghbr = D−1A

D = diag(d1, . . . , dn) and A are degree and 0-1 adjacency matrices

The left dominant eigenvector is

wequal-nghbr =
1∑n
i=1 di

d1...
dn


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Averaging in wireless sensor networks

Awsn =


1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3


1/2

1/3

1/41/2

1/41/4

1/4

1/3

1/3

1/3 1/3

1/3

3

1 2

4

The update matrix can be written as

Awsn = (D + I4)
−1(A+ I4)

The left dominant eigenvector is

wwsn =
1

n +
∑n

i=1 di

d1 + 1
...

dn + 1


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The Metropolis–Hastings model

AMH =


3
4

1
4 0 0

1
4

1
4

1
4

1
4

0 1
4

5
12

1
3

0 1
4

1
3

5
12

 3/4

1/4

1/4

1/3

1/4 1/4

5/12

5/12

1 2

3 4

Let G be undirected graph, the Metropolis–Hastings model:

(AMH)ij =



1

1 + max{di , dj}
, if {i , j} ∈ E and i ̸= j ,

1−
∑

{i ,h}∈E ,h ̸=i

(AMH)ih, if i = j ,

0, otherwise.

Properties of AMH

1 AMH = A⊤
MH

2 AMH is primitive iff G is connected
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Upcoming

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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