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@ Averaging systems achieving asymptotic consensus
@ Eigenvalue 1 is simple, all others strictly less than 1
O lim_ A =1w'
© G contains a globally reachable node and the subgraph is aperiodic
@ Averaging systems achieving asymptotic disagreement
@ Eigenvalue 1 is semisimple, all others strictly less than 1
@ A is semiconvergent
©® Each sink is aperiodic
@ Consensus via Lyapunov function
o Disagreement vector
e Quadratic disagreement function
e Max-min disagreement function
o Weight design
e Equal-neighbor model
e Metropolis-Hastings
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@ Definition, useful equalities and applications
© Properties of Laplacian matrices
© Symmetric Laplacian and algebraic connectivity

@ Laplacian systems and Laplacian pseudoinverses



@ Definition, useful equalities and applications



The Laplacian matrix: definition

Laplacian matrices

Given a weighted digraph G with adjacency matrix A and out-degree
matrix Doyt = diag(Al,), the Laplacian matrix of G is

L = Doyt — A.

In components L = (EU)iJe{l,...,n}

—aj, if i # J,
0. — n
PTY YD am ifi=j
h=1,hi
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The Laplacian matrix: definition

Laplacian matrices

Given a weighted digraph G with adjacency matrix A and out-degree
matrix Doyt = diag(Al,), the Laplacian matrix of G is

L = Doyt — A.

In components L = (EU)iJe{l,...,n}

—aj, if i ],
/- n
PTY YD am ifi=j
h=1,hi

@ Diagonal elements are nonnegative, off-diagonal elements nonpositive
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The Laplacian matrix: definition

Laplacian matrices

Given a weighted digraph G with adjacency matrix A and out-degree
matrix Doyt = diag(Al,), the Laplacian matrix of G is

L = Doyt — A.

In components L = (EU)iJe{l,...,n}

—aj, if i # J,
0. — n
PTY YD am ifi=j
h=1,hi

@ Diagonal elements are nonnegative, off-diagonal elements nonpositive

@ L does not depend on self-loops
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The Laplacian matrix: definition

Laplacian matrices

Given a weighted digraph G with adjacency matrix A and out-degree
matrix Doyt = diag(Al,), the Laplacian matrix of G is

L = Doyt — A.

In components L = (EU)iJe{l,...,n}

—aj, if i # J,
0. — n
PTY YD am ifi=j
h=1,hi

@ Diagonal elements are nonnegative, off-diagonal elements nonpositive
@ L does not depend on self-loops

@ G is undirected (A symmetric) iff L is symmetric
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The Laplacian matrix: definition

Laplacian matrices

Given a weighted digraph G with adjacency matrix A and out-degree
matrix Doyt = diag(Al,), the Laplacian matrix of G is

L = Doyt — A.

In components L = (EU)iJe{l,...,n}

—aj, if i # J,
0. — n
PTY YD am ifi=j
h=1,hi

@ Diagonal elements are nonnegative, off-diagonal elements nonpositive
@ L does not depend on self-loops

@ G is undirected (A symmetric) iff L is symmetric

@ L is irreducible if G is strongly connected
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The Laplacian matrix: definition

@ 63 —37 —26 0 0
7 89 101 0 -12 0

3
v i' ' A> L=1| 0 0 42 -19 -23
2.6——> 2.3 0 0 0 0 0

—-44 0 0 =27 71

0 37 26 0 O 63 0 0 0 O
89 0 0 12 0 0 101 0 O O
A=]10 0 0 19 23 Doyt = | O 0 42 0 O
0o 0 0 0 O 0 0 0 0 O

44 0 0 27 44 0 0 0 0 115
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The Laplacian matrix: useful equalities

(Lx)i =) Ly
j=1

n
={ix; + Z EUXJ'
J=1#0
n n

:< > a,-j>x,-+ > (—ap)x
=L =L
n

= > ajlxi—x)

j=Li#i

= D> 306 —x)

jENou(i)
(Lx); is the weighted sum of pairwise differences between i and neighbors
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The Laplacian matrix: useful equalities

Suppose L is symmetric

n n

xlx = Zx, (Lx)i X:( Y il —Xj)>
=1 j=1j#i
= Z aUx;(X, ) Z au Z AijXiXj

Il
/‘\

ij=1 ij=1 ij=1
by symmetry
E:a,]x +35 E:au E:aux,xj
I,_j 1 I,_j 1 ij=1
1 n
2 2
=52 @il — %)= Y ajlxi—x)*
ij=1 {ij}cE

The function x — x ' Lx is called the Laplacian potential function
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The Laplacian in mechanical networks of springs

g TR
O O (ON@) Q O

I

@ x; € R denote the displacement of the ith rigid body.
@ Ideal spring with spring constant a;; connects the ith and jth bodies

e Each node (body) is subject to a force
Fi = Zay(xj - Xi) = _(Lstiffnessx)i
J#i
@ The potential energy is given by
1

1
Eelastic — 5 Z aij(Xi - XJ)2 — EXTLstianessX
{ij}€E
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The Laplacian in electrical networks of resistors

[Ty é

source

W .
@ Each edge is a resistor with resistance rjj between nodes i/ and j
e Ohm's law along each edge {i,} gives the current flowing from i to j
Gisj = 2 2 a(vi — v))
Fij
@ Kirchhoff's current law at each node i:
n
Cinjected at i — Z aij(Vi - V_]) — GCinjected = LeonductanceV
J=1j#i
@ Energy dissipation

_ 2 _ T
Edissipated = g aij(Vi - V_j) =V LeonductanceV
{ij1eE
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© Properties of Laplacian matrices



Row and column sums

Let G be a weighted digraph with Laplacian L and n nodes. Then
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Row and column sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

Laplacian matrices

A matrix L € R™" n > 2 is Laplacian if
@ its row-sums are zero,

@ its non-diagonal entries are non-positive, and

© its diagonal entries are non-negative.
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Row and column sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

L1, = 0,.

Laplacian matrices

A matrix L € R™" n > 2 is Laplacian if

@ its row-sums are zero,
@ its non-diagonal entries are non-positive, and

© its diagonal entries are non-negative.

Zero column-sums

Let G be a weighted digraph with Laplacian L and n nodes. Then
@ G is weight-balanced, i.e., Dot = D;,, if and only if
®1L=0.
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Given a weighted digraph G with Laplacian L, the eigenvalues of L
different from 0 have strictly-positive real part.
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Given a weighted digraph G with Laplacian L, the eigenvalues of L
different from 0 have strictly-positive real part.

Semisimplicity of the zero eigenvalue

Let L be the Laplacian matrix of a weighted digraph G with n nodes. Let
ns denote the number of sinks in the condensation digraph of G. Then

@ the eigenvalue 0 is semisimple with multiplicity ns,

@ the following are equivalent:

6 G contains a globally reachable node,
® the eigenvalue 0 is simple, and
® rank(L)=n-1
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© Symmetric Laplacian and algebraic connectivity



Laplacian eigenvalues and algebraic connectivity

Suppose the Laplacian L is symmetric, then the eigenvalues are

0= << <A,

Algebraic connectivity

The second smallest eigenvalue \» of a symmetric Laplacian L of a
weighted digraph G is called the algebraic connectivity of G.

The algebraic connectivity and its associated eigenvector are also referred
to as the Fiedler eigenvalue and Fiedler eigenvector.
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Laplacian eigenvalues and algebraic connectivity

Suppose the Laplacian L is symmetric, then the eigenvalues are

0= << <A,

Algebraic connectivity

The second smallest eigenvalue \» of a symmetric Laplacian L of a
weighted digraph G is called the algebraic connectivity of G.

The algebraic connectivity and its associated eigenvector are also referred
to as the Fiedler eigenvalue and Fiedler eigenvector.

Algebraic connectivity and connectivity

For a weighted undirected graph G with symmetric Laplacian L:
@ G is connected if and only if Ay > 0;

® the multiplicity of 0 is equal to the number of connected components.
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Properties of the algebraic connectivity

Properties of algebraic connectivity

Consider a weighted undirected graph with symmetric adjacency matrix A,
symmetric Laplacian matrix L, and algebraic connectivity As.

@ Variational description:

= x ' Lx,

min
[[x|l2=1, x L1,

® Monotonicity property:

A<A = X<\
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Properties of the algebraic connectivity

Properties of algebraic connectivity

Consider a weighted undirected graph with symmetric adjacency matrix A,
symmetric Laplacian matrix L, and algebraic connectivity As.

@ Variational description:

Ao = x ' Lx,

min
[[x|l2=1, x L1,

® Monotonicity property:

A<A = X<\

Graph Algebraic connectivity

path graph P, 2(1 — cos(m/n)) ~ w2 /n?
cycle graph C,, 2(1 — cos(2m/n)) ~ 4n2/n?
star graph S, 1

complete graph K, n

complete bipartite K}, ,,, min(n,m)
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Community detection via algebraic connectivity
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@ Given adjacency matrix A, find a partition V = V; U V, to minimize

J(Vl,\/g): Z a,-j.

ieVi,jeVr
o Define x € {—1,1}"sothat x; =1iff i€ Vi, x;=—-1iff i€ \
1 ¢ R
K@ZSZ%%M—&)=4xﬁ
ij=
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Community detection via algebraic connectivity

@ Minimization of cut size

minimize x ! Lx.
XE{*l,l}"\{*ln,ln}

@ Continuous relaxation

minimize yTLy.
YER™ yL1n, |lylleo=1

@ Change norm
minimize y
y€eR™ y L1, |lyll2=1

Heuristic: use sign of the Fiedler eigenvector to find a partition.
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Community detection via algebraic connectivity

0 10 20 30 400 50 600 700 80 00 1000

2y

|Vi| = 450, | V2| = 550
Nodes within V; are connected with probability 50%
Nodes within V5 are connected with probability 40%

Nodes in V4 and V5, are connected with probability 15%
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@ Laplacian systems and Laplacian pseudoinverses



Spring networks and resistive circuit

+1
-3 +1 +2 —WW—9
current current
source source
T L —
= A =
VAVAVAVAV AAAAAZ

o Equilibrium displacement

LstiffnessX = fioad

@ Voltage equilibrium

LeonductanceV = Cinjected
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Spring networks and resistive circuit

+1
-3 +1 +2
current
source u
z = —
- MM A -

o Equilibrium displacement

LstiffnessX = fioad
@ Voltage equilibrium

LeonductanceV = Cinjected

Laplacian systems
A Laplacian system is a linear system of equations in the variable x € R”
of the form

Lx = b,

where L € R"™" is a Laplacian matrix and b € R".
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Soltuions to Laplacian systems

Solutions to Laplacian systems

Consider the symmetric Laplacian matrix L of a connected graph with
decomposition L = Udiag(0, \2,...,A,)U", where U € R™" is
orthonormal. Then

© image(L) = 1. so that the system admits solutions iff b L 1,

® if b € R" is balanced, that is, b L 1,, then the set of solutions to the

Laplacian system is
{LTh+ 51, | B €R},

© the pseudoinverse of L is

0 O 0
AT] Dot
0 0 1/A
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Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems
Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory
Nonlienar averaging systems (Euler-Lagrangian, oscillators)
Other advanced topics

Week 15-16:
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