The Laplacian Matrix

AU7036: Introduction to Multi-agent Systems

Xiaoming Duan Department of Automation Shanghai Jiao Tong University

March 12, 2024

Last time

- Averaging systems achieving asymptotic consensus
 - **1** Eigenvalue 1 is simple, all others strictly less than 1

$$\lim_{k\to\infty}A^k=\mathbb{1}_nw^\top$$

- **3** *G* contains a globally reachable node and the subgraph is aperiodic
- Averaging systems achieving asymptotic disagreement
 - $\mathbf{1}$ Eigenvalue 1 is semisimple, all others strictly less than 1
 - 2 A is semiconvergent
 - 3 Each sink is aperiodic
- Consensus via Lyapunov function
 - Disagreement vector
 - Quadratic disagreement function
 - Max-min disagreement function
- Weight design
 - Equal-neighbor model
 - Metropolis-Hastings

1 Definition, useful equalities and applications

2 Properties of Laplacian matrices

3 Symmetric Laplacian and algebraic connectivity

4 Laplacian systems and Laplacian pseudoinverses

1 Definition, useful equalities and applications

Properties of Laplacian matrices

3 Symmetric Laplacian and algebraic connectivity

4 Laplacian systems and Laplacian pseudoinverses

Given a weighted digraph G with adjacency matrix A and out-degree matrix $D_{out} = diag(A \mathbb{1}_n)$, the Laplacian matrix of G is

$$L = D_{out} - A.$$

In components $L = (\ell_{ij})_{i,j \in \{1,...,n\}}$

$$\ell_{ij} = \begin{cases} -a_{ij}, & \text{if } i \neq j, \\ \sum_{h=1, h \neq i}^{n} a_{ih}, & \text{if } i = j. \end{cases}$$

Given a weighted digraph G with adjacency matrix A and out-degree matrix $D_{out} = diag(A \mathbb{1}_n)$, the Laplacian matrix of G is

$$L = D_{out} - A.$$

In components $L = (\ell_{ij})_{i,j \in \{1,...,n\}}$

$$\ell_{ij} = \begin{cases} -a_{ij}, & \text{if } i \neq j, \\ \sum_{h=1, h \neq i}^{n} a_{ih}, & \text{if } i = j. \end{cases}$$

• Diagonal elements are nonnegative, off-diagonal elements nonpositive

Given a weighted digraph G with adjacency matrix A and out-degree matrix $D_{out} = diag(A \mathbb{1}_n)$, the Laplacian matrix of G is

$$L = D_{out} - A.$$

In components $L = (\ell_{ij})_{i,j \in \{1,...,n\}}$

$$\ell_{ij} = \begin{cases} -a_{ij}, & \text{if } i \neq j, \\ \sum_{h=1, h \neq i}^{n} a_{ih}, & \text{if } i = j. \end{cases}$$

• Diagonal elements are nonnegative, off-diagonal elements nonpositive

• L does not depend on self-loops

Given a weighted digraph G with adjacency matrix A and out-degree matrix $D_{out} = diag(A \mathbb{1}_n)$, the Laplacian matrix of G is

$$L = D_{out} - A.$$

In components $L = (\ell_{ij})_{i,j \in \{1,...,n\}}$

$$\ell_{ij} = \begin{cases} -a_{ij}, & \text{if } i \neq j, \\ \sum_{h=1, h \neq i}^{n} a_{ih}, & \text{if } i = j. \end{cases}$$

- Diagonal elements are nonnegative, off-diagonal elements nonpositive
- L does not depend on self-loops
- G is undirected (A symmetric) iff L is symmetric

Given a weighted digraph G with adjacency matrix A and out-degree matrix $D_{out} = diag(A \mathbb{1}_n)$, the Laplacian matrix of G is

$$L = D_{out} - A.$$

In components $L = (\ell_{ij})_{i,j \in \{1,...,n\}}$

$$\ell_{ij} = \begin{cases} -a_{ij}, & \text{if } i \neq j, \\ \sum_{h=1, h \neq i}^{n} a_{ih}, & \text{if } i = j. \end{cases}$$

- Diagonal elements are nonnegative, off-diagonal elements nonpositive
- L does not depend on self-loops
- G is undirected (A symmetric) iff L is symmetric
- *L* is irreducible if *G* is strongly connected

Laplacian matrix (Lecture 6)

The Laplacian matrix: definition

The Laplacian matrix: useful equalities

$$(Lx)_{i} = \sum_{j=1}^{n} \ell_{ij} x_{j}$$
$$= \ell_{ii} x_{i} + \sum_{j=1, j \neq i}^{n} \ell_{ij} x_{j}$$
$$= \left(\sum_{j=1, j \neq i}^{n} a_{ij}\right) x_{i} + \sum_{j=1, j \neq i}^{n} (-a_{ij}) x_{j}$$
$$= \sum_{j=1, j \neq i}^{n} a_{ij} (x_{i} - x_{j})$$
$$= \sum_{j \in \mathcal{N}^{\text{out}}(i)}^{n} a_{ij} (x_{i} - x_{j})$$

 $(Lx)_i$ is the weighted sum of pairwise differences between *i* and neighbors

The Laplacian matrix: useful equalities

Suppose *L* is symmetric

$$\begin{aligned} x^{\top} L x &= \sum_{i=1}^{n} x_i (Lx)_i = \sum_{i=1}^{n} x_i \Big(\sum_{j=1, j \neq i}^{n} a_{ij} (x_i - x_j) \Big) \\ &= \sum_{i, j=1}^{n} a_{ij} x_i (x_i - x_j) = \Big(\frac{1}{2} + \frac{1}{2} \Big) \sum_{i, j=1}^{n} a_{ij} x_i^2 - \sum_{i, j=1}^{n} a_{ij} x_i x_j \\ &\stackrel{\text{by symmetry}}{=} \frac{1}{2} \sum_{i, j=1}^{n} a_{ij} x_i^2 + \frac{1}{2} \sum_{i, j=1}^{n} a_{ij} x_j^2 - \sum_{i, j=1}^{n} a_{ij} x_i x_j \\ &= \frac{1}{2} \sum_{i, j=1}^{n} a_{ij} (x_i - x_j)^2 = \sum_{\{i, j\} \in E} a_{ij} (x_i - x_j)^2. \end{aligned}$$

The function $x \mapsto x^{\top} L x$ is called the Laplacian potential function

The Laplacian in mechanical networks of springs

- $x_i \in \mathbb{R}$ denote the displacement of the *i*th rigid body.
- Ideal spring with spring constant a_{ij} connects the *i*th and *j*th bodies
- Each node (body) is subject to a force

$$F_i = \sum_{j \neq i} a_{ij}(x_j - x_i) = -(L_{\text{stiffness}}x)_i$$

• The potential energy is given by

$$E_{\text{elastic}} = \frac{1}{2} \sum_{\{i,j\} \in E} a_{ij} (x_i - x_j)^2 = \frac{1}{2} x^\top L_{\text{stiffness}} x$$

The Laplacian in electrical networks of resistors

- Each edge is a resistor with resistance r_{ij} between nodes *i* and *j*
- Ohm's law along each edge $\{i, j\}$ gives the current flowing from i to j

$$c_{i
ightarrow j} = rac{v_i - v_j}{r_{ij}} \triangleq a_{ij}(v_i - v_j)$$

• Kirchhoff's current law at each node *i*:

$$c_{ ext{injected at }i} = \sum_{j=1, j \neq i}^{n} a_{ij}(v_i - v_j) \implies c_{ ext{injected}} = L_{ ext{conductance}} v$$

Energy dissipation

$$E_{ ext{dissipated}} = \sum_{\{i,j\} \in E} a_{ij} (v_i - v_j)^2 = v^\top L_{ ext{conductance}} v$$

Definition, useful equalities and applications

2 Properties of Laplacian matrices

3 Symmetric Laplacian and algebraic connectivity

4 Laplacian systems and Laplacian pseudoinverses

Zero row-sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

 $L\mathbb{1}_n = \mathbb{O}_n.$

Zero row-sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

 $L\mathbb{1}_n = \mathbb{O}_n.$

Laplacian matrices

A matrix $L \in \mathbb{R}^{n \times n}$, $n \ge 2$, is Laplacian if

- its row-sums are zero,
- 2 its non-diagonal entries are non-positive, and

3 its diagonal entries are non-negative.

Zero row-sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

 $L\mathbb{1}_n = \mathbb{O}_n.$

Laplacian matrices

A matrix $L \in \mathbb{R}^{n \times n}$, $n \ge 2$, is Laplacian if

- its row-sums are zero,
- 2 its non-diagonal entries are non-positive, and

3 its diagonal entries are non-negative.

Zero column-sums

Let G be a weighted digraph with Laplacian L and n nodes. Then

1 G is weight-balanced, i.e.,
$$D_{out} = D_{in}$$
, if and only if

$$2 \ \mathbb{1}_n^\top L = \mathbb{0}_n^\top.$$

Laplacian matrix (Lecture 6)

Spectrum of L

Given a weighted digraph G with Laplacian L, the eigenvalues of L different from 0 have strictly-positive real part.

Spectrum of L

Given a weighted digraph G with Laplacian L, the eigenvalues of L different from 0 have strictly-positive real part.

Semisimplicity of the zero eigenvalue

Let *L* be the Laplacian matrix of a weighted digraph *G* with *n* nodes. Let n_s denote the number of sinks in the condensation digraph of *G*. Then

- **()** the eigenvalue 0 is semisimple with multiplicity n_s ,
- 2 the following are equivalent:
 - a G contains a globally reachable node,
 - **b** the eigenvalue 0 is simple, and

Definition, useful equalities and applications

2 Properties of Laplacian matrices

3 Symmetric Laplacian and algebraic connectivity

4 Laplacian systems and Laplacian pseudoinverses

Laplacian eigenvalues and algebraic connectivity

Suppose the Laplacian L is symmetric, then the eigenvalues are

$$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n.$$

Algebraic connectivity

The second smallest eigenvalue λ_2 of a symmetric Laplacian *L* of a weighted digraph *G* is called the algebraic connectivity of *G*.

The algebraic connectivity and its associated eigenvector are also referred to as the Fiedler eigenvalue and Fiedler eigenvector.

Laplacian eigenvalues and algebraic connectivity

Suppose the Laplacian L is symmetric, then the eigenvalues are

$$0=\lambda_1\leq\lambda_2\leq\cdots\leq\lambda_n.$$

Algebraic connectivity

The second smallest eigenvalue λ_2 of a symmetric Laplacian *L* of a weighted digraph *G* is called the algebraic connectivity of *G*.

The algebraic connectivity and its associated eigenvector are also referred to as the Fiedler eigenvalue and Fiedler eigenvector.

Algebraic connectivity and connectivity

For a weighted undirected graph G with symmetric Laplacian L:

- **1** *G* is connected if and only if $\lambda_2 > 0$;
- **2** the multiplicity of 0 is equal to the number of connected components.

Properties of the algebraic connectivity

Properties of algebraic connectivity

Consider a weighted undirected graph with symmetric adjacency matrix A, symmetric Laplacian matrix L, and algebraic connectivity λ_2 .

1 Variational description:

$$\lambda_2 = \min_{\|x\|_2 = 1, \, x \perp \mathbb{1}_n} x^\top L x,$$

2 Monotonicity property:

$$A \leq A' \implies \lambda_2 \leq \lambda'_2$$

Properties of the algebraic connectivity

Properties of algebraic connectivity

Consider a weighted undirected graph with symmetric adjacency matrix A, symmetric Laplacian matrix L, and algebraic connectivity λ_2 .

1 Variational description:

$$\lambda_2 = \min_{\|x\|_2=1, \, x \perp \mathbb{1}_n} x^\top L x,$$

2 Monotonicity property:

$$A \leq A' \implies \lambda_2 \leq \lambda'_2$$

Graph	Algebraic connectivity
path graph P_n	$2(1 - \cos(\pi/n)) \sim \pi^2/n^2$
cycle graph C_n	$2(1 - \cos(2\pi/n)) \sim 4\pi^2/n^2$
star graph S_n	1
complete graph K_n	n
complete bipartite $K_{n,m}$	$\min(n,m)$

Community detection via algebraic connectivity

• Given adjacency matrix A, find a partition $V = V_1 \cup V_2$ to minimize

$$J(V_1, V_2) = \sum_{i \in V_1, j \in V_2} a_{ij}$$
.

• Define $x \in \{-1,1\}^n$ so that $x_i = 1$ iff $i \in V_1$, $x_i = -1$ iff $i \in V_2$

$$J(x) = \frac{1}{8} \sum_{i,j=1}^{n} a_{ij} (x_i - x_j)^2 = \frac{1}{4} x^{\top} L x$$

Community detection via algebraic connectivity

Minimization of cut size

$$\underset{x \in \{-1,1\}^n \setminus \{-\mathbb{1}_n, \mathbb{1}_n\}}{\text{minimize}} x^\top L x.$$

• Continuous relaxation

$$\underset{y \in \mathbb{R}^{n}, y \perp \mathbb{1}_{n}, \|y\|_{\infty} = 1}{\text{minimize}} y^{\top} Ly.$$

• Change norm

$$\underset{y \in \mathbb{R}^{n}, y \perp \mathbb{1}_{n}, \|y\|_{2}=1}{\text{minimize}} y^{\top} Ly.$$

Heuristic: use sign of the Fiedler eigenvector to find a partition.

Community detection via algebraic connectivity

- $|V_1| = 450, |V_2| = 550$
- Nodes within V_1 are connected with probability 50%
- Nodes within V_2 are connected with probability 40%
- Nodes in V_1 and V_2 are connected with probability 15%

Definition, useful equalities and applications

Properties of Laplacian matrices

3 Symmetric Laplacian and algebraic connectivity

4 Laplacian systems and Laplacian pseudoinverses

Spring networks and resistive circuit

• Equilibrium displacement

$$L_{\text{stiffness}}x = f_{\text{load}}$$

• Voltage equilibrium

 $L_{\text{conductance}}v = c_{\text{injected}}$

Spring networks and resistive circuit

• Equilibrium displacement

$$L_{\text{stiffness}}x = f_{\text{load}}$$

Voltage equilibrium

$$L_{
m conductance}v=c_{
m injected}$$

Laplacian systems

A Laplacian system is a linear system of equations in the variable $x \in \mathbb{R}^n$ of the form

$$Lx = b$$
,

where $L \in \mathbb{R}^{n \times n}$ is a Laplacian matrix and $b \in \mathbb{R}^{n}$.

Solutions to Laplacian systems

Consider the symmetric Laplacian matrix L of a connected graph with decomposition $L = U \operatorname{diag}(0, \lambda_2, \dots, \lambda_n) U^{\top}$, where $U \in \mathbb{R}^{n \times n}$ is orthonormal. Then

- **1** image(L) = $\mathbb{1}_n^{\perp}$ so that the system admits solutions iff $b \perp \mathbb{1}_n$,
- 2 if $b \in \mathbb{R}^n$ is balanced, that is, $b \perp \mathbb{1}_n$, then the set of solutions to the Laplacian system is

$$\{L^{\dagger}b+\beta\mathbb{1}_n\mid\beta\in\mathbb{R}\},\$$

 \bigcirc the pseudoinverse of L is

$$L^{\dagger} = U \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1/\lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/\lambda_n \end{bmatrix} U^{\top}$$

- Injected current is $c_{injected} = e_i e_j$
- Node potential v can be solved via

$$L_{\text{conductance}} v = c_{\text{injected}} \implies v = L_{\text{conductance}}^{\dagger} c_{\text{injected}} + \beta \mathbb{1}_n$$

• Effective resistance is then $r_{ij}^{\text{eff}} = v_i - v_j$, i.e.,

$$r_{ij}^{\text{eff}} = (\mathbb{e}_i - \mathbb{e}_j)^{\top} L_{\text{conductance}}^{\dagger} (\mathbb{e}_i - \mathbb{e}_j).$$

Upcoming

Week 1-6:

- Introduction
- Elements of matrix theory
- Elements of graph theory
- Elements of algebraic graph theory
- Discrete-time averaging systems
- The Laplacian matrix
- Continuous-time averaging systems
- Diffusively-coupled linear systems
- (*) The incidence matrix and its applications
- (*) Metzler matrices and dynamical flow systems

Week 7-14:

- Lyapunov stability theory
- Nonlienar averaging systems (Euler-Lagrangian, oscillators)
- Other advanced topics

Week 15-16:

Project presentation

Laplacian matrix (Lecture 6)