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Definitions of Laplacian matrices

Properties of Laplacian matrices

@ Spectrum
@ Multiplicity of eigenvalue 0 v.s. graph properties

Symmetric Laplacian and algebraic connectivity

o Multiplicity of eigenvalue 0 and number of connected components
o Algebraic connectivity (Fiedler eigenvalue and Fiedler eigenvector)

Laplacian systems and pseudoinverses
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© Example systems
© Continuous-time linear systems and their convergence properties
e The Laplacian flow

@ Design of weight-balanced digraphs



© Example systems



Example #1: Flocking dynamics

Flocking dynamics: a simple alignment rule

@ Each animal steers towards the average heading of its neighbors

(0 — 6), if one neighbor
0; = 200, — 0;) + 1(0;, — 0)), if two neighbors
105, —0;))+ -+ L(0;, — 0;), if m neighbors

= average({0;, for all neighbors j}) — 0;
J
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Example #1: Flocking dynamics

Flocking dynamics: a simple alignment rule

(0; — 6;), if one neighbor
0; = 300, — 0;) + 5(6, — 0)), if two neighbors
L0, —0)+ -+ 10, —0), if m neighbors

= average({#;, for all neighbors j}) — 0;
J

In matrix form

0=A0—0=(A—10=—L0
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Example #2: Continuous-time opinion dynamics

@ Discrete-time opinion dynamics
x(k 4+ 1) = Ax(k)

@ A continuous-time counterpart

x(k+1)= 3 apg
j=1
= a;ixi(k) + Z aijx;j(k)
J#i
=(1- Z ajj)xi(k) + Z ajjx;j( k)
J#i J#
= (k) + 3 ai09(k) — (k)
J#i
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Example #2: Continuous-time opinion dynamics

@ Discrete-time opinion dynamics
x(k 4+ 1) = Ax(k)
@ A continuous-time counterpart
X,'(k + 1) = Z ajjX;j
j=1
= aixi(k) + > _ ajxi(k)
J#i
= (1= Y a0+ 3 sk
J#i J#i
= x(K) + 3 25(5(k) — x(K)
J#i
o If the edge weights aj; are of the form a;; = a;;7

x(t) = —Lx(t)
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Example #3: A simple RC circuit

@ The injected currents at nodes satisfy

Cinjected = Lv,
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Example #3: A simple RC circuit

@ The injected currents at nodes satisfy

Cinjected = Lv,

@ With capacitors at node i

d
G avi = —Cinjected at i
@ The overall dynamics
d 1
—v=—-C""Lv
dt
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Example #4: Discretization of partial differential equations

i—1,j) i.d) i+1,j)

o Let u(t,x,y) be temperature at (x,y) € Q at time t, heat equation

gltl =cAu,

where

@ c is thermal diffusivity

@® A is Laplacian differential operator

9%u 9%u

AU(t,X,y) = @(t,X,y) + aiyz(tvxay)
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Example #4: Discretization of partial differential equations

i=1,j) i.d) i+1,j)

@ Finite difference approximation for Laplacian operator

Au(t, xi, yj)
~ U(t,Xi—lyyj) + u(t7Xi+17yj) + U(t,Xi,yj—l) + U(t,Xh}/j—H) - 4u(t7Xi7.)/j)
~ 12
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Example #4: Discretization of partial differential equations

i=1,j) i.d) i+1,j)

@ Finite difference approximation for Laplacian operator

Au(t, xi, yj)
~ U(t,Xi—lyyj) + u(t7Xi+17yj) + U(t,Xi,yj—l) + U(t,Xh}/j—H) - 4u(t)Xi7.)/j)
~ 12

@ Heat equation can be approximated by

d c
a Udiscrete = — ﬁ L ugiscrete

March 19, 2024
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© Continuous-time linear systems and their convergence properties



Continuous-time linear systems

@ A continuous-time linear system is

x(t) = Ax(t)
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Continuous-time linear systems

@ A continuous-time linear system is

x(t) = Ax(t)

@ The solution is given by
x(t) = exp(At)x(0)

where

=1
exp(A) = Z ﬂAk
k=0
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Continuous-time linear systems

@ A continuous-time linear system is

x(t) = Ax(t)

@ The solution is given by

where

Semi-convergence and convergence
A matrix A € R"™" js
@ continuous-time semi-convergent if lim;_, ., exp(At) exists;

® Hurwitz or continuous-time convergent if lim;—, o exp(At) = Opxp
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Convergence conditions

x(t) = Ax(t)

@ The spectral abscissa of A is maximum of real parts of eigenvalues:

a(A) = max{R(A\) | X € spec(A)}

Convergence and spectral abscissa
For a square matrix A, the following statements hold:

@ A is continuous-time convergent (Hurwitz) if and only if a(A) < 0,
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Convergence conditions

x(t) = Ax(t)

@ The spectral abscissa of A is maximum of real parts of eigenvalues:

a(A) = max{R(A\) | X € spec(A)}

Convergence and spectral abscissa

For a square matrix A, the following statements hold:
@ A is continuous-time convergent (Hurwitz) if and only if a(A) < 0,

® A is continuous-time semi-convergent and not convergent iff

6 0 is a semisimple eigenvalue;
® all other eigenvalues have negative real part.
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e The Laplacian flow



Laplacian flow: Definition

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system
x=—Lx
@ In components

n
Xi=Y ajlx—x)= Y ajl5—x)
j=1

JENo(i)
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Matrix exponential of a Laplacian matrix

x=—Lx

@ The solution to the Laplacian flow is given by

x(t) = exp(—Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L € R™" be a Laplacian matrix with associated weighted digraph G
and with maximum diagonal entry ¢pax = max{¢11,...,%nn}. Then

0 exp(—L)1,=1,,
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Matrix exponential of a Laplacian matrix

x=—Lx

@ The solution to the Laplacian flow is given by

x(t) = exp(—Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L € R™" be a Laplacian matrix with associated weighted digraph G

and with maximum diagonal entry ¢pax = max{¢11,...,%nn}. Then
(1] exp(—L)l,, =1,
A 1) exp(—L)=1,iff G is weight-balanced (i.e., 1)L =0,),
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Matrix exponential of a Laplacian matrix

x=—Lx

@ The solution to the Laplacian flow is given by

x(t) = exp(—Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L € R™" be a Laplacian matrix with associated weighted digraph G

and with maximum diagonal entry ¢pax = max{¢11,...,%nn}. Then
(1] exp(—L)l,, =1,
A 1) exp(—L)=1,iff G is weight-balanced (i.e., 1)L =0,),

(3] eXP(—L) > e_émaxln > 0pxns
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Matrix exponential of a Laplacian matrix

x=—Lx

@ The solution to the Laplacian flow is given by

x(t) = exp(—Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L € R™" be a Laplacian matrix with associated weighted digraph G

and with maximum diagonal entry ¢pax = max{¢11,...,%nn}. Then
(1] exp(—L)l,, =1,
A 1) exp(—L)=1,iff G is weight-balanced (i.e., 1)L =0,),

(3] eXP(—L) > e_émaxln > 0pxns
O exp(—L)e; >0, iff Jj-th node is globally reachable in G,
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Matrix exponential of a Laplacian matrix

x=—Lx

@ The solution to the Laplacian flow is given by

x(t) = exp(—Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L € R™" be a Laplacian matrix with associated weighted digraph G

and with maximum diagonal entry ¢pax = max{¢11,...,%nn}. Then
O exp(-L)1, =1,
A 1) exp(—L)=1,iff G is weight-balanced (i.e., 1)L =0,),
© exp(—L) = e~m Iy > Onxn,
O exp(—L)e; >0, iff Jj-th node is globally reachable in G,
O exp(—L) >0, iff G strongly connected (L irreducible).
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Equilibria and convergence of the Laplacian flow

x=—Lx

Equilibria

If G contains a globally reachable node, then the set of equilibria is

span{l,} = {81, | 5 € R}
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Equilibria and convergence of the Laplacian flow

x=—Lx

Equilibria

If G contains a globally reachable node, then the set of equilibria is

span{1,} = {81, | B € R}

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;

(A2) A is semi-convergent and limg_, Ak =1,w', where w > 0,
wA=w' andw'l, =1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.
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Equilibria and convergence of the Laplacian flow

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;
(A2) A is semi-convergent and limy_,., AK = 1,w', where w >0,
w'A=w' and WTln =1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

Consensus conditions for x = —Lx

Let L be a Laplacian matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 0 of —L is simple and all others have negative real part,
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Equilibria and convergence of the Laplacian flow

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;
(A2) A is semi-convergent and limy_,., AK = 1,w', where w >0,
w'A=w' and WTln =1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

Consensus conditions for x = —Lx

Let L be a Laplacian matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 0 of —L is simple and all others have negative real part,

(A2) —L is continuous-time semi-convergent lim; . exp(—Lt) = 1,w',
where w € R" satisfies w > 0, l;,rw =1, and w'L = O,,T,
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Equilibria and convergence of the Laplacian flow

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues p satisfy |u| < 1;

(A2) A is semi-convergent and limy_,., AK = 1,w', where w >0,
w'A=w' and WTln =1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

Consensus conditions for x = —Lx

Let L be a Laplacian matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 0 of —L is simple and all others have negative real part,

(A2) —L is continuous-time semi-convergent lim; . exp(—Lt) = 1,w',
where w € R" satisfies w > 0, l;,rw =1, and w'L = O,,T,

(A3) G contains a globally reachable node.
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Equilibria and convergence of the Laplacian flow

Consensus for Laplacian matrices with a globally reachable node

Let L be a Laplacian matrix and let G be its associated digraph. If any of
(A1)-(A3) holds, then

® w > 0 is left dominant eigenvector of —L and w; > 0 iff node i is
globally reachable;
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Equilibria and convergence of the Laplacian flow

Consensus for Laplacian matrices with a globally reachable node

Let L be a Laplacian matrix and let G be its associated digraph. If any of
(A1)-(A3) holds, then

® w > 0 is left dominant eigenvector of —L and w; > 0 iff node i is
globally reachable;

@ the solution to %x(t) = —Lx(t) satisfies

lim x(t) = (WTX(O))].”,

t—0o0
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Equilibria and convergence of the Laplacian flow

Consensus for Laplacian matrices with a globally reachable node

Let L be a Laplacian matrix and let G be its associated digraph. If any of
(A1)-(A3) holds, then
® w > 0 is left dominant eigenvector of —L and w; > 0 iff node i is
globally reachable;

@ the solution to %x(t) = —Lx(t) satisfies

lim x(t) = (WTX(O))].”,

t—0o0

© if additionally G is weight-balanced, then G is strongly connected,
1/L=0), w= %1,,, and

n

lim x(t) = ml

t—00 n

n = average(x(0))1,.
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@ Design of weight-balanced digraphs



Design of weight-balanced digraphs

Given a strongly-connected weighted digraph G with adjacency matrix A,
how to design doubly stochastic A and weight balanced L?

o Let lmax = max{/11,...,¢nn}, w be left dominant eigenvector of L
e Weight balanced L

[l

diag(w)L

‘gmax
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Design of weight-balanced digraphs

Given a strongly-connected weighted digraph G with adjacency matrix A,
how to design doubly stochastic A and weight balanced L?

o Let lmax = max{/11,...,¢nn}, w be left dominant eigenvector of L
e Weight balanced L

[l

diag(w)L

‘gmax

e Doubly stochastic A
A=1,—1L
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Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems
Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory
Nonlienar averaging systems (Euler-Lagrangian, oscillators)
Other advanced topics

Week 15-16:

Project presentation
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