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Last time

Definitions of Laplacian matrices

Properties of Laplacian matrices

1 Spectrum
2 Multiplicity of eigenvalue 0 v.s. graph properties

Symmetric Laplacian and algebraic connectivity

Multiplicity of eigenvalue 0 and number of connected components
Algebraic connectivity (Fiedler eigenvalue and Fiedler eigenvector)

Laplacian systems and pseudoinverses
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Example #1: Flocking dynamics

Flocking dynamics: a simple alignment rule

Each animal steers towards the average heading of its neighbors

θ̇i =


(θj − θi ), if one neighbor
1
2(θj1 − θi ) +

1
2(θj2 − θi ), if two neighbors

1
m (θj1 − θi ) + · · ·+ 1

m (θjm − θi ), if m neighbors

= average
(
{θj , for all neighbors j}

)
− θi
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2(θj1 − θi ) +

1
2(θj2 − θi ), if two neighbors

1
m (θj1 − θi ) + · · ·+ 1

m (θjm − θi ), if m neighbors

= average
(
{θj , for all neighbors j}

)
− θi

In matrix form
θ̇ = Aθ − θ = (A− I )θ = −Lθ
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Example #2: Continuous-time opinion dynamics

Discrete-time opinion dynamics

x(k + 1) = Ax(k)

A continuous-time counterpart

xi (k + 1) =
n∑

j=1

aijxj

= aiixi (k) +
∑
j ̸=i

aijxj(k)

= (1−
∑
j ̸=i

aij)xi (k) +
∑
j ̸=i

aijxj(k)

= xi (k) +
∑
j ̸=i

aij(xj(k)− xi (k))

If the edge weights aij are of the form aij = āijτ

ẋ(t) = −L̄x(t)
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Example #3: A simple RC circuit

The injected currents at nodes satisfy

cinjected = L v ,

With capacitors at node i

Ci
d

dt
vi = −cinjected at i

The overall dynamics
d

dt
v = −C−1L v
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Example #4: Discretization of partial differential equations

y
x

⌦

j
i

(i, j) (i+1, j)

(i, j+1)

(i�1, j)

(i, j�1)

Let u(t, x , y) be temperature at (x , y) ∈ Ω at time t, heat equation

∂u

∂t
= c ∆u,

where

1 c is thermal diffusivity
2 ∆ is Laplacian differential operator

∆u(t, x , y) =
∂2u

∂x2
(t, x , y) +

∂2u

∂y2
(t, x , y)
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Example #4: Discretization of partial differential equations

y
x

⌦

j
i

(i, j) (i+1, j)

(i, j+1)

(i�1, j)

(i, j�1)

Finite difference approximation for Laplacian operator

∆u(t, xi , yj)

≈ u(t, xi−1, yj) + u(t, xi+1, yj) + u(t, xi , yj−1) + u(t, xi , yj+1)− 4u(t, xi , yj)

h2

Heat equation can be approximated by

d

dt
udiscrete = − c

h2
L udiscrete
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Continuous-time linear systems

A continuous-time linear system is

ẋ(t) = Ax(t)

The solution is given by

x(t) = exp(At)x(0)

where

exp(A) =
∞∑
k=0

1

k!
Ak

Semi-convergence and convergence

A matrix A ∈ Rn×n is

1 continuous-time semi-convergent if limt→+∞ exp(At) exists;

2 Hurwitz or continuous-time convergent if limt→+∞ exp(At) = 0n×n
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Convergence conditions

ẋ(t) = Ax(t)

The spectral abscissa of A is maximum of real parts of eigenvalues:

α(A) = max{ℜ(λ) | λ ∈ spec(A)}

Convergence and spectral abscissa

For a square matrix A, the following statements hold:

1 A is continuous-time convergent (Hurwitz) if and only if α(A) < 0,

2 A is continuous-time semi-convergent and not convergent iff

(a) 0 is a semisimple eigenvalue;
(b) all other eigenvalues have negative real part.
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Laplacian flow: Definition

Let G be a weighted digraph with n nodes and Laplacian matrix L

The Laplacian flow on Rn is the dynamical system

ẋ = −Lx

In components

ẋi =
n∑

j=1

aij(xj − xi ) =
∑

j∈N out(i)

aij(xj − xi )
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Matrix exponential of a Laplacian matrix

ẋ = −Lx

The solution to the Laplacian flow is given by

x(t) = exp(−Lt)x(0)

The matrix exponential of a Laplacian matrix

Let L ∈ Rn×n be a Laplacian matrix with associated weighted digraph G
and with maximum diagonal entry ℓmax = max{ℓ11, . . . , ℓnn}. Then

1 exp(−L)1n = 1n,

2 1⊤
n exp(−L) = 1⊤

n , iff G is weight-balanced (i.e., 1⊤
n L = 0⊤

n ),

3 exp(−L) ≥ e−ℓmax In ≥ 0n×n,

4 exp(−L)ej > 0, iff j-th node is globally reachable in G ,

5 exp(−L) > 0, iff G strongly connected (L irreducible).

Continuous-time averaging (Lecture 7) AU7036 March 19, 2024 12 / 17



Matrix exponential of a Laplacian matrix
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Equilibria and convergence of the Laplacian flow

ẋ = −Lx

Equilibria

If G contains a globally reachable node, then the set of equilibria is

span{1n} = {β1n | β ∈ R}

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent and limk→∞ Ak = 1nw
⊤, where w ≥ 0,

w⊤A = w⊤ and w⊤1n = 1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.
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ẋ = −Lx

Equilibria

If G contains a globally reachable node, then the set of equilibria is

span{1n} = {β1n | β ∈ R}

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent and limk→∞ Ak = 1nw
⊤, where w ≥ 0,

w⊤A = w⊤ and w⊤1n = 1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

Continuous-time averaging (Lecture 7) AU7036 March 19, 2024 13 / 17



Equilibria and convergence of the Laplacian flow

Consensus conditions for x(k + 1) = Ax(k)

Let A be a row-stochastic matrix and let G be its associated digraph. The
following statements are equivalent:

(A1) the eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1;

(A2) A is semi-convergent and limk→∞ Ak = 1nw
⊤, where w ≥ 0,

w⊤A = w⊤ and w⊤1n = 1;

(A3) G contains a globally reachable node and the subgraph of globally
reachable nodes is aperiodic.

Consensus conditions for ẋ = −Lx
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Equilibria and convergence of the Laplacian flow

Consensus for Laplacian matrices with a globally reachable node

Let L be a Laplacian matrix and let G be its associated digraph. If any of
(A1)-(A3) holds, then

1 w ≥ 0 is left dominant eigenvector of −L and wi > 0 iff node i is
globally reachable;

2 the solution to d
dt x(t) = −Lx(t) satisfies

lim
t→∞

x(t) =
(
w⊤x(0)

)
1n,

3 if additionally G is weight-balanced, then G is strongly connected,
1⊤
n L = 0⊤

n , w = 1
n1n, and

lim
t→∞

x(t) =
1⊤
n x(0)

n
1n = average

(
x(0)

)
1n.
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Design of weight-balanced digraphs

Given a strongly-connected weighted digraph G with adjacency matrix A,
how to design doubly stochastic Ā and weight balanced L̄?

Let ℓmax = max{ℓ11, . . . , ℓnn}, w be left dominant eigenvector of L

Weight balanced L̄

L̄ =
1

ℓmax
diag(w)L

Doubly stochastic Ā
Ā = In − L̄
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Upcoming

Week 1-6:

Introduction

Elements of matrix theory

Elements of graph theory

Elements of algebraic graph theory

Discrete-time averaging systems

The Laplacian matrix

Continuous-time averaging systems

Diffusively-coupled linear systems

(*) The incidence matrix and its applications

(*) Metzler matrices and dynamical flow systems

Week 7-14:

Lyapunov stability theory

Nonlienar averaging systems (Euler-Lagrangian, oscillators)

Other advanced topics

Week 15-16:

Project presentation
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