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@ Continuous-time linear systems and their convergence properties

e Solutions via matrix exponential
e Semi-convergence and Hurwitz via spectral abscissa

@ Laplacian flows and their convergence properties

e Properties of matrix exponential of Laplacian matrices
e Equivalent conditions for consensus

@ Design of weight-balanced digraphs
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@ Consensus problems with vector-valued states
© Diffusively-coupled linear systems (SISO case)
© Application to the second-order Laplacian flow
@ State-feedback and controller design (MIMO case)

© Extension to Formation Control



@ Consensus problems with vector-valued states



Laplacian flow with scalar states

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system
x=—Lx

@ In components

n
X = Z aj(xj — x;) = Z aji(x; — x;)
j=1

JENo(i)
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Laplacian flow with scalar states

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system
x=—Lx
@ In components

n
X = Z aj(xj — x;) = Z aji(x; — x;)
j=1

JENo(i)

What if each node has a vector-valued state x; € R9?
@ Position of robots in 2D or 3D space

e Opinions regarding multiple issues/topics
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Vector-value states Laplacian flow

Component-wise equation still holds

n
=Y aplx—x)= Y ajlg—x)
j=1

jeNout(i)

where x; € RY
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Vector-value states Laplacian flow

Component-wise equation still holds

n
=Y aplx—x)= Y ajlg—x)
j=1

jeNout(i)

where x; € RY

@ Define system state
X1

X2
x=|_|eRrRM

Xn

@ What is the differential equation for x?
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Laplacian flow with vector-value states

@ Define system state
X1
X2
x=| | eRrm
Xn

@ What is the differential equation for x?

X1 —lilg —Llalg - —liplg| [x
_ X2 —lorly —lolg -+ —laplg| |x
Xn _gnl Id _€n2ld te _gnn/d Xn
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Laplacian flow with vector-value states

@ Define system state
X1
X2
x=| | eRrm

Xn

@ What is the differential equation for x?

X1 —lilg —Llalg - —liplg| [x
_ X2 —lorly —lolg -+ —laplg| |x
X = = ) )

Xn _gnl Id _€n2ld te _gnn/d Xn

@ More compactly via Kronecker product

x=(—L® lg)x
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Kronecker product: Definition

Kronecker product

The Kronecker product of A € R™™ and B € R9*" is the nqg X mr matrix
A® B given by
3118 ce almB

AR B =

amB . ammB

@ Whatis I, ® B?
o What is A® I,?
@ Whatis v w?
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Kronecker product: Definition

Kronecker product

The Kronecker product of A € R™™ and B € R9*" is the nqg X mr matrix
A® B given by
3118 almB
AR B =
amB . ammB
@ Whatis I, ® B?
o What is A® I,?
o What is v® w?
B ... 0 anly ... awlg viw
LheB=|: " : ARl =1 = . vw =
0 . B amily - amnlg maxna VaW

ngXxnr
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Kronecker product: Properties

anB ... aimB
A®B =
amB - ammB
o Bilinearity
(aA+BB)@(yC+6D) = ayA® C+adA®@ D+ yB® C+B5B® D
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Kronecker product: Properties

anB ... aimB
A®B =
amB - ammB
o Bilinearity
(aA+BB)@(yC+6D) = ayA® C+adA®@ D+ yB® C+B5B® D

@ Associativity
(AB)® C=A®(B® C)
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Kronecker product: Properties

anB ... aimB
A®B =
amB - ammB
o Bilinearity
(aA+BB)@(yC+6D) = ayA® C+adA®@ D+ yB® C+B5B® D

@ Associativity
(AB)® C=A®(B® C)

@ Transpose
(AoB)T =AT@BT
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Kronecker product: Properties

anB ... aimB
A®B =
amB - ammB
o Bilinearity
(aA+BB)@(yC+6D) = ayA® C+adA®@ D+ yB® C+B5B® D

@ Associativity
(AB)® C=A®(B® C)

@ Transpose
(AoB)T =AT@BT

@ Mixed product
(A® B)(C® D) = (AC) ®(BD)
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Kronecker product: Consequences of mixed product

anB ... aimB
AR B =
amB . ammB
Mixed product property: (A® B)(C ® D) = (AC) ®(BD)
o If Av = Av, Bw = uw, then

(A®B)(vew) = (Av) ®(Bw) = Au(v @ w)

@ v®w is an eigenvector of A® B
@ spectrum(A® B) = {Ap | A € spectrum(A), o € spectrum(B)}

o If both A and B are invertible, then

(AeB)(A'eB ) =1
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Laplacian flow with vector-value states: Analysis

x = (—L® lg)x

or component-wise

n
=) ai(x — xi)
j=1

e Decomposition: each component x¥ of x; for k € {1,...,d} satisfies
n
-k k _  k
Xi :Za,-j(xj = X;)
j=1
Component k reaches consensus to w' [x{(0) x5(0) --- x,’f(O)]T

@ Use the spectrum properties of —L ® Iy
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© Diffusively-coupled linear systems (SISO case)



Diffusively-coupled identical linear systems

@ A single-input-single-output (SISO) continuous-time linear system is
xi(t) = Ax;(t) + Bui(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) €R, and y;(t) €R
@ Agents are connected through a weighted digraph G with Laplacian L
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Diffusively-coupled identical linear systems

@ A single-input-single-output (SISO) continuous-time linear system is
xi(t) = Ax;(t) + Bui(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) €R, and y;(t) €R
@ Agents are connected through a weighted digraph G with Laplacian L
@ Output-dependent diffusive coupling law

ui(t) =D ay(y(t) — yi(t)) = C Y az(x(t) — xi(t))
j=1 j=1
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Diffusively-coupled identical linear systems

@ A single-input-single-output (SISO) continuous-time linear system is
xi(t) = Ax;(t) + Bui(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) €R, and y;(t) €R
@ Agents are connected through a weighted digraph G with Laplacian L
@ Output-dependent diffusive coupling law

ui(t) =D ay(y(t) — yi(t)) = C Y az(x(t) — xi(t))
j=1 j=1

wi = 05 = 9) [(0) = daalt) + Burt) | vi

+v
Yk -0 T O
¥ [aa] N yi(t) = Ci(t)

Diffusively-coupled systems (Lecture 8) AU7036 March 22, 2024 10 / 32



Diffusively-coupled identical linear systems

o A diffusively coupled SISO linear systems

xi(t) = Axi(t) + Bui(t)

y,-(t) = CX,'(t)
ui(t) = a5(yi(t) — yi(1)) = C Y aj(xi(t) — xi(1))
j=1 j=1

Diffusively-coupled identical linear systems

A network of diffusively-coupled identical linear systems is composed by n
identical continuous-time linear SISO systems (A, B, C) and a Laplacian L.
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Diffusively-coupled identical linear systems

o A diffusively coupled SISO linear systems
X;(t) = AX,'(l') + Bu,-(t)
yi(t) = Cxi(t)

ui(t) =Y ay(yi(t) = yi(1) = C Y ay(x(t) — xi(t))
j=1 j=1

Asymptotic synchronization

A network of diffusively-coupled linear systems (A, B, C) and Laplacian L
achieves asymptotic synchronization if, for all 7, and initial conditions,

Jim [lxi(2) = ()]l = 0.

@ There exists a trajectory xp(t) such that for all i € {1,...,n}
[1xi(t) = xo(t)][2 = 0

@® Synchronization to some trajectory xp(t) instead of a fixed value
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Modeling via Kronecker product

o A diffusively coupled SISO linear systems
xi(t) = Axi(t) + Buj(t), yi(t) = Cxi(t)

ui(t) =Y a(y(t) = yi(t) = €D a5(x(1) — xi(1))
j=1 j=1
@ Closed-loop system

() = Axi(t) + BC Y ay((t) — xi(1))

J=1
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Modeling via Kronecker product

o A diffusively coupled SISO linear systems
xi(t) = Axi(t) + Buj(t), yi(t) = Cxi(t)

ui(t) =Y a(y(t) = yi(t) = €D a5(x(1) — xi(1))
j=1 j=1
@ Closed-loop system

() = Axi(t) + BC Y ay((t) — xi(1))

j=1
x(t) A o] [x®)] =%, a,BC ... 21,BC x(t)
. ... #1 J n
RO || el 7 . . xa(t)
S i R T :
%(t) 0 Al |x\(t) am BC o =i BCL (b
@ What is Kronecker formulation with state x = [xlT P x,—,r] "7
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Modeling via Kronecker product

o A diffusively coupled SISO linear systems
xi(t) = Axi(t) + Buj(t), yi(t) = Cxi(t)

ui(t) =Y a(y(t) = yi(t) = €D a5(x(1) — xi(1))
j=1 j=1
@ Closed-loop system

() = Axi(t) + BC Y ay((t) — xi(1))

j=1
x(t) A o] [x®)] =%, a,BC ... 21,BC x(t)
. ... #1 J n
RO || el 7 . . xa(t)
S i R T :
%(t) 0 Al |x\(t) am BC o =i BCL (b
@ What is Kronecker formulation with state x = [xlT P x,—,r] "7

x=(l,®A—L®BC)x
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Synchronization theorem

x=(l,®A— L®BC)x

Synchronization of diffusively-coupled linear systems
Consider a network of diffusively-coupled identical linear systems described
by the system (A, B, C) and the Laplacian L.

Suppose the digraph associated with L contains a globally reachable node.
Then:
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Synchronization theorem

x=(l,®A— L®BC)x

Synchronization of diffusively-coupled linear systems
Consider a network of diffusively-coupled identical linear systems described
by the system (A, B, C) and the Laplacian L.
Suppose the digraph associated with L contains a globally reachable node.
Then:
@ system synchronizes on x(t) iff A— X\;BC is Hurwitz for 2 < < n:
@ Laplacian spectrum 0= X1 < [Ag| < -+ < A,
@® Consensus value:

)_<(t) = eAt Z W,'X,'(O)

with w'L = O,,T, w'l,=1
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Synchronization theorem

x=(l,®A— L®BC)x

Synchronization of diffusively-coupled linear systems
Consider a network of diffusively-coupled identical linear systems described
by the system (A, B, C) and the Laplacian L.
Suppose the digraph associated with L contains a globally reachable node.
Then:
@ system synchronizes on x(t) iff A— X\;BC is Hurwitz for 2 < < n:
@ Laplacian spectrum 0= X1 < [Ag| < -+ < A,
@® Consensus value:

)_<(t) = eAt Z W,'X,'(O)

with w'L = O,,T, w'l,=1

@ system is exponentially stable iff A— X\;BC is Hurwitz for 1 </ < n

v
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© Application to the second-order Laplacian flow



Second-order Laplacian flow: Definition

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system for i € {1,...,n}
Xi=ui= )y 3y - xi)
jeNeu(i)
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Second-order Laplacian flow: Definition

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system for i € {1,...,n}
Xi=ui= )y 3y - xi)
jeNeu(i)

@ A double integrator is a dynamical system

qi = Vi

q; = ij, or in first-order equivalent form {
Vi = uj
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Second-order Laplacian flow: Definition

Let G be a weighted digraph with n nodes and Laplacian matrix L

@ The Laplacian flow on R" is the dynamical system for i € {1,...,n}
Xi=ui= )y 3y - xi)
jENOUt(i)
@ A double integrator is a dynamical system
. o . Ji = Vi
q; = ij, or in first-order equivalent form {q, -
Vi = uj

EI:|’MFy 3:|de
P (ONO) (ONO) q
/ kq kq kq
kg kp

v

by

~
>

n
Ui = —kpqi — kqqi + Zaij(%(qj —qi) + 744 — 1))
=1
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Second-order Laplacian flow: Definition
e e,

kq kq
ky LS

AN\

aqi = uj

n
b = —koti — kadi + > aij(vo(qj — i) +a(4j — &)
j=1

@ The second-order Laplacian flow is given by

G(t) + (kaln +vaL)q(t) + (kpln + vaL)q(t) = Op.
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Second-order Laplacian flow as diffusively-coupled systems
Va Yd
Y T
Z kq ka ka
ky ks ks

aqi = uj

n
b = —kpqi — kaGi + Y _ 3 (v(qj — @) +1a(45 — &)
=1

i — m
qi

@ The dynamics of the i-th subsystem is

- f-12, A0

@ Let the state be
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Second-order Laplacian flow: Analysis

Synchronization theorem

The system achieves asymptotic synchronization on x(t) if and only if
each matrix A — \;BC for i € {2,..., n} is Hurwitz, where

@ Laplacian spectrum 0 = A1 < [Ap] < -+ < A,

® Consensus value: for w' L = 0;, w'l, =1

x(t) = et Z; w;x;(0)

1 A 13 P ] 4

@ Synchronization condition: the following matrix is Hurwitz

|:_(i(p —1/<J - i[v()p ’Sd] B [—(kpj:)\;vp) —(delr/\,-vd)]
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Second-order Laplacian flow: Analysis

@ Consensus value:

0 1

(1) = e > wixi(0) = e[_kp —kd} t > wixi(0)
i=1 i=1

@ k, = kq = 0 (no spring and no damper to wall, appropriate v, 74):

eAt:[l t] {q,-(t)at27_1w;¢;<o>+z,-"_1w,-q,-(0)
01

Gi(t) — >, wigi(0)

Second-order averaging protocol
G(t) + Lg(t) + v Lg(t) = 0
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Second-order Laplacian flow: Analysis

@ Consensus value:

N [ 0 1 }t N
x(t) =MD wixi(0) =e ~ko —ka > wixi(0)
i=1 i=1

@D k, >0, kg =0 (only spring to wall, appropriate v,, v4):

qi(t) — Z w;qi(0) cos(y/kpt) + Z w;4;(0) sin(y/kpt);

pll

Harmonic oscillators with velocity averaging
q(t) + Lq(t) + kpg(t) = 0
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Second-order Laplacian flow: Analysis

@ Consensus value:
0 1

(1) = e > wixi(0) = e[_kp —kd} t > wixi(0)
i=1 i=1

© k, =0, kg > 0 (only damper to wall, appropriate 7, 74):

] _[1 1(1—e-kdf>] (1) = =24 1 7 wigi(0)
0 e kit q,(t)—>0

Position-averaging with absolute velocity damping
L) " » _
N G(t) + kaq(t) + Lq(t) =0

AU7036 March 22, 2024
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@ State-feedback and controller design (MIMO case)



Diffusively-coupled MIMO systems

e A multi-input-multi-output (MIMO) continuous-time linear system is

X;(t) = AX,'(t) + Bu,-(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) € RP, and y;(t) € RY
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Diffusively-coupled MIMO systems

e A multi-input-multi-output (MIMO) continuous-time linear system is

)-<,'(t) = AX,'(t) + Bu,-(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) € RP, and y;(t) € RY

o State-dependent diffusive coupling law

ui(t) = c > apK(x(t) — xi(t))
j=1

pxd

where ¢ > 0 is coupling coefficient, K € R is control gain matrix
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Diffusively-coupled MIMO systems

e A multi-input-multi-output (MIMO) continuous-time linear system is

X;(t) = AX,'(t) + Bu,-(t)
yi(t) = Cxi(t)

where x;(t) € RY, u;(t) € RP, and y;(t) € RY
o State-dependent diffusive coupling law

ui(t) = c > apK(x(t) — xi(t))
j=1

where ¢ > 0 is coupling coefficient, K € RP*? is control gain matrix

How to design ¢ and K so as to achieve synchronization?
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Diffusively-coupled MIMO systems

o Diffusively-coupled MIMO systems
Xi(t) = AX,'(t) + Bu;(t)

ui(t) = ¢y aK(xi(t) — xi(t))
j=1

Synchronization theorem
Consider a network of state-feedback diffusively-coupled identical linear
systems described by the system (A, B, C) and the Laplacian L.
Suppose the digraph associated with L contains a globally reachable node.
Then:
@ system achieves synchronization on x(t) iff each matrix A — cA\;BK is
Hurwitz for 2 < i < n, where with w' L = OI, wll, =1

x(t) = et Z; w;x;(0)
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Stabilization of linear systems

@ A continuous-time linear control systems is
x(t) = Ax(t) + Bu(t)

where A € R9*9, B € RI*P
o Given feedback gain K, feedback u = —Kx induces x = (A — BK)x

Stabilizability
(A, B) is stabilizable if there exists matrix K such that A — BK is Hurwitz.
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Stabilization of linear systems

@ A continuous-time linear control systems is

x(t) = Ax(t) + Bu(t)

where A € R9*9, B € RI*P
o Given feedback gain K, feedback u = —Kx induces x = (A — BK)x

Stabilizability
(A, B) is stabilizable if there exists matrix K such that A — BK is Hurwitz.

Stabilizability of linear control systems
Given a linear control system (A, B), the following are equivalent
® (A, B) is stabilizable;
@ there exists d x d matrix P > 0 solving the Lyapunov inequality

AP + PAT —2BBT <0 linear matrix inequality (LMI)

A stabilizing feedback gain matrix is K = BT P~1.
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Diffusively-coupled MIMO systems: Analysis

Algorithm High-gain LMI design

Input: a stabilizable pair (A, B)

Output: a control gain matrix K and coupling gain ¢
1: set P := any solution to the LMl AP 4+ PAT —2BBT <0
2: set K:=BTP!
3: set ¢ := 1/ min{R(N\;)|i € {2,...,n}}
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Diffusively-coupled MIMO systems: Analysis

Algorithm High-gain LMI design

Input: a stabilizable pair (A, B)

Output: a control gain matrix K and coupling gain ¢
1: set P := any solution to the LMl AP 4+ PAT —2BBT <0
2: set K:=BTP!
3: set ¢ := 1/ min{R(N\;)|i € {2,...,n}}

Lyapunov inequality for Hurwitzness

A complex matrix A € C™" is Hurwitz if there exists P = 0 such that

AP + PAH < 0.
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Diffusively-coupled MIMO systems: Analysis

Algorithm High-gain LMI design

Input: a stabilizable pair (A, B)

Output: a control gain matrix K and coupling gain ¢
1: set P := any solution to the LMl AP 4+ PAT —2BBT <0
2: set K:=BTP!
3: set ¢ := 1/ min{R(N\;)|i € {2,...,n}}

Lyapunov inequality for Hurwitzness

A complex matrix A € C™" is Hurwitz if there exists P = 0 such that

AP + PAH < 0.

High-gain LMI design for stabilizable linear control systems

Consider n identical continuous-time linear control systems described by
(A, B) and a digraph G with Laplacian L.
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Diffusively-coupled MIMO systems: Analysis

Algorithm High-gain LMI design

Input: a stabilizable pair (A, B)

Output: a control gain matrix K and coupling gain ¢
1: set P := any solution to the LMl AP 4+ PAT —2BBT <0
2: set K:=BTpP~1
3: set ¢ := 1/ min{R(N\;)|i € {2,...,n}}

Lyapunov inequality for Hurwitzness
A complex matrix A € C™" is Hurwitz if there exists P = 0 such that

AP + PAH < 0.

High-gain LMI design for stabilizable linear control systems
Consider n identical continuous-time linear control systems described by
(A, B) and a digraph G with Laplacian L.

If (A, B) stabilizable and G contains a globally reachable node,

then the resulting pair (K, c) of the high-gain LMI design algorithm
ensures that each matrix A — c\;BK is Hurwitz for 2 < i < n.
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© Extension to Formation Control



Formation control of multi-agent systems

e A multi-input-multi-output (MIMO) continuous-time linear system is

xi(t) = Ax;(t) + Bu;(t)

y,-(t) = CX,'(t)
where x;(t) € RY, u;(t) € RP, and y;(t) € RY
@ Let H=(hy,..., h,) be a constant formation of agent network

How to design controller u; so that agents achieve formation?

Multi-agent formation

A network of linear systems (A, B, C) with Laplacian L achieves formation
H = (h1,..., hy) if, for all i,j and initial conditions,

lim [[(xi(t) = hi) = (x;(t) = hj)ll2 = 0.

t—00
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Formation control of multi-agent systems

e A multi-input-multi-output (MIMO) continuous-time linear system is

xi(t) = Ax;(t) + Bu;(t)

y,-(t) = CX,'(t)
where x;(t) € RY, u;(t) € RP, and y;(t) € RY
@ Let H=(hy,..., h,) be a constant formation of agent network

How to design controller u; so that agents achieve formation?

Multi-agent formation

A network of linear systems (A, B, C) with Laplacian L achieves formation
H = (h1,..., hy) if, for all i,j and initial conditions,

lim [[(xi(t) = hi) = (x;(t) = hj)ll2 = 0.

t—00

o State-dependent formation control law

ui(t) = ¢ > agK((xi(t)—hj) — (xi(t)—h7))
j=1
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Formation control of multi-agent systems

X,'(Z‘) = AX,'(t) + Bu,-(t)

ui(t) = ¢ 3 agK((g(0) hy) — (xi(t)— b))
j=1

@ Closed-loop systems

%i(t) = Axi(t) + cBK Y~ ay((xi(t)—hj) — (xi(t)—hi))

Jj=1
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Formation control of multi-agent systems

X,'(Z‘) = AX,'(t) + Bu,-(t)

ui(t) = ¢ 3 agK((g(0) hy) — (xi(t)— b))
j=1

@ Closed-loop systems

%i(t) = Axi(t) + cBK Y~ ay((xi(t)—hj) — (xi(t)—hi))

Jj=1

@ Define new variable X; = x; — h;, then we have
%i(t) = A%(t) + cBK Y _ a;(%(t) — %i(t)) + Ah;
j=1

Agents achieve formation iff X achieves consensus
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Formation control of multi-agent systems

Si(t) = A%(t) + cBK Y  a;(%i(t) — %i(t)) + Ah;
j=1

@ Modeling using Kronecker product

=l ®A—cl®BK)X+ (I,®A)h

n

where h= [A,....n1]"
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Formation control of multi-agent systems

Si(t) = A%(t) + cBK Y a;(%i(t) — %(t)) + Ah;
j=1

@ Modeling using Kronecker product
=l ®A—cl®BK)X+ (I,®A)h

where h= [A,....n1]"

Formation control
Consider a network of state-feedback diffusively-coupled identical linear
systems described by the system (A, B, C) and the Laplacian L.
Suppose the digraph associated with L contains a globally reachable node.
Suppose the desired formation is H = (hy, ..., h,). Then:
@ the system achieves asymptotic formation iff each matrix A — c\;BK
is Hurwitz for 2 < i <n, and Ah; =0 for1 < i < n.
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Formation control of multi-agent systems: An example

dﬁﬁ

o Each agent moves on a 2D plane with state x; = [x} x? v} V]

@ State space model

X} 0 0 1 0] [x 00
).('_>'<,-_0001x,-2+00{u,-1]
Pl T jo0 0 of |V 0 1| |u?

v? 000 0f [v 10

1
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Formation control of multi-agent systems: An example

@ Control for each agent
ui = cK Y ag(((t)—hy) — (xi(t)—hy))
j=1

where the formation is a regular hexagon (position formation):

0 4 6 4 0 2

0 0 2V/3 43 43 23
=gl b= 1| hs= \Of hy = ‘Of hs = \Of he = *0[

0 0 0 0 0 0

@ Note that Ah; = 0 is satisfied for all /

@ The gain matrix and coefficient K and c are designed using LMls
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Formation control of multi-agent systems: An example

Formation control
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Week 1-6:
@ Introduction
Elements of matrix theory
Elements of graph theory
Elements of algebraic graph theory
Discrete-time averaging systems
The Laplacian matrix

Continuous-time averaging systems
o Diffusively-coupled linear systems
Week 7-14:
@ Lyapunov stability theory
@ Nonlienar averaging systems (Euler-Lagrangian, oscillators)
@ Other advanced topics
Week 15-16:
@ Project presentation
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